

IMPLEMENTATION OF DDFS ARCHITECTURE USING

CORDIC ALGORITHM

A Project report submitted in partial fulfilment of the requirements for

the award of the degree of

BACHELOR OF TECHNOLOGY

IN

ELECTRONICS AND COMMUNICATION ENGINEERING

Submitted by

T. AVINASH (318126512108) B.V.J. ASHRITHA (318126512067)

 S. SREEVALLI (318126512104) N. SURAJ (318126512091)

Under the guidance of

Mr. N. Srinivasa Naidu, M.Tech, (Ph.D)

(Assistant Professor)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

ANIL NEERUKONDA INSTITUTE OF TECHNOLOGY AND SCIENCES

Autonomous status accorded by UGC and Andhra University

Approved by AICTE, Permanently Affiliated to Andhra University

Accredited by NBA (IT, CSE, EEE, ECE, MECH, CHEM and CIVIL) & accredited by

NAAC

Sangivalasa – 531162, Bheemunipatnam (Mandal), Visakhapatnam (District)

(2021-2022)

ACKNOWLEDGEMENT

 We would like to express our deep gratitude to our project guide Mr. N. Srinivasa

Naidu, Assistant Professor, Department of Electronics and Communication Engineering,

ANITS, for his guidance with unsurpassed knowledge and immense encouragement. We are

grateful to Dr. V. Rajyalakshmi, Head of the Department, Electronics and Communication

Engineering, for providing us with the required facilities for the completion of the project work.

 We are very much thankful to the Principal and Management, ANITS, Sangivalasa,

for their encouragement and cooperation to carry out this work.

 We express our thanks to all teaching faculty of Department of ECE, whose

suggestions during reviews helped us in accomplishment of our project. We would like to thank

all non-teaching staff of the Department of ECE, ANITS for providing great assistance in

accomplishment of our project.

 We would like to thank our parents, friends, and classmates for their encouragement

throughout our project period. At last but not the least, we thank everyone for supporting us

directly or indirectly in completing this project successfully.

 PROJECT STUDENTS

 T. AVINASH (318126512108)

 B.V.J. ASHRITHA (318126512067)

 S. SREEVALLI (318126512104)

 N. SURAJ (318126512091)

ABSTRACT

 In this project an efficient approach is proposed in implementing DDFS architecture

using CORDIC algorithm. Direct Digital Frequency Synthesis (DDFS) is a method of

producing an analog waveform usually a sine wave by generating a time-varying signal in

digital form and then performing a digital-to-analog conversion from a fixed clock frequency.

It can offer fast switching between output frequencies, fine frequency resolution, and operation

over a broad spectrum of frequencies. DDFS architecture can be implemented using

ROM/lookup table approach.

 CORDIC based DDFS architecture is a process where we design a new kind of

architecture using the finest CORDIC algorithm in which we replace the ROM with CORDIC

element to save memory. Coordinate rotation digital computer (CORDIC) is an efficient

algorithm for computations of trigonometric functions. Scaling-free-CORDIC is one of the

famous CORDIC implementations with advantages of speed and area. After describing the

algorithm and its implementation in MATLAB, the project covers design techniques that can

be applied to implement a DDFS architecture in VIVADO using Verilog Programming

language. The output frequency results of the DDFS using LUT approach and DDFS using

CORDIC algorithm is compared. The simulation results of the both approaches will be verified.

Keywords: CORDIC Algorithm, DDFS, lookup table, Verilog

 CONTENTS

 CHAPTER Page no.

 List of Figures i

 List of Tables iii

 List of abbreviations iv

1. INTRODUCTION

1.1 Introduction to Sine and Cosine 1

1.2 Different types of methods for implementing

Sine and Cosine wave generator 3

1.2.1 Wien bridge Oscillator 3

1.2.2 Phase-shift Oscillator 4

1.2.3 Phase Locked Loop method 5

1.2.4 Direct Digital Frequency Synthesizer 5

1.2.5

2. DIRECT DIGITAL FREQUENCY SYNTHESIZER

2.1 Introduction to DDFS 7

2.2 Performance of DDFS 7

2.3 Improved DDFS Architecture 12

2.4 Frequency Shift Keying using DDFS 13

2.5 Verilog program for implementing basic DDFS 14

3. CORDIC METHODOLOGY

3.1 Introduction to CORDIC 16

3.1.1 Importance of CORDIC 16

3.1.2 Applications of CORDIC 16

3.2 Modes of Operation 17

3.2.1 Rotation Mode 17

3.2.2 Vectoring Mode 19

 3.3 Methodology Used 20

 3.4 Real CORDIC Rotations 20

 3.5 Pseudo CORDIC Rotations 21

 3.6 Basic CORDIC Rotations 21

 3.7 Hardware Mapping 23

 3.8 Time Shared Architecture 24

 3.9 CORDIC based DDFS Architecture 25

 3.9.1 Calculations 26

3.10 Verilog implementation of CORDIC based DDFS architecture 27

4. VERILOG

4.1 Introduction to Verilog 31

4.1.1 Verilog Capabilities 31

4.1.2 Data types in Verilog 31

4.1.2.1 Value Set 31

4.1.2.2 Wire 31

4.1.2.3 Register 32

4.1.2.4 Input, Output 32

4.2 Program structure in Verilog 32

4.2.1 Declaration of input and output 32

4.3 Module declaration in Verilog 33

4.3.1 Verilog Module 33

4.3.2 Level of Abstraction 33

4.3.2.1 Switch level Modelling 33

4.3.2.2 Gate Level Modelling 34

4.3.2.3 Data Flow Modelling 34

4.3.2.4 Behavioural Modelling 34

 4.4 Implementation of Basic Programs Using Verilog 35

4.4.1 Multiplexer 35

4.4.2 Full Adder 35

5. INTRODUCTION TO SOFTWARE TOOLS

5.1 Software Tools Used 36

5.1.1 MATLAB 36

5.1.2 ModelSim 36

5.1.3 XILINX VIVADO 37

5.2 XILINX VIVADO ISE Design Suite 37

5.3 ISE Project Navigator 38

5.4 Steps for Design entry 42

5.4.1 Working through the Basic Project Flow 42

5.4.2 Project Manager 43

 5.4.2.1 Project Settings 43

 5.4.2.2 Add Sources 44

 5.4.2.3 Define a module 46

6. REPORTS AND SIMULATION RESULTS

6.1 Time Comparisons 48

6.2 Values Comparison in MATLAB 48

6.3 Values Comparison in XILINX 49

6.4 Simulation Results 50

6.4.1 DDFS Architecture using LUT 50

6.4.2 DDFS Architecture using CORDIC 51

6.5 Memory Utilization 52

6.5.1 Memory utilization in LUT approach 52

6.5.2 Memory utilization in CORDIC approach 52

 6.6 Frequency Comparison 53

 CONCLUSION 54

 REFERENCES 55

i

List of Figures Page no.

Fig 1.1 Representation of sine angle 1

Fig 1.2 Sine Waveform 1

Fig 1.3 Representation of cosine 2

Fig 1.4 Cosine Waveform 2

Fig 1.5 Wien Bridge Oscillator 3

Fig 1.6 Phase-shift Oscillator 4

Fig 1.7 Phase Locked Loop 5

Fig 1.8 Direct Digital Frequency Synthesize 6

Fig 1.9 A stepped approximation of a sine wave. 6

Fig 2.1 DDFS Architecture 7

Fig 2.2 Digital Phase Wheel 8

Fig 2.3 Graphical representation of sine angle generation (1) 11

Fig 2.4 Graphical representation of sine angle generation (2) 11

Fig 2.5 Modified DDFS Architecture 12

Fig 2.6 FSK modulation 13

Fig 2.7 DDFS based FSK modulator 13

Fig 3.1 Illustration of the CORDIC Algorithm 17

Fig 3.2 Real CORDIC rotations 20

Fig 3.3 Pseudo CORDIC rotations 21

Fig 3.4 Illustration of the first three rotations for a Z of 30 degrees 22

Fig 3.5 Hardware Mapping 23

Fig 3.6 Pipelined FDA architecture of CORDIC algorithm 24

Fig 3.7 Four slow folded architecture by a folding factor of 4 24

Fig 3.8 Timing diagram of 4 slow folded CORDIC architecture 25

Fig 3.9 CORDIC based DDFS 26

ii

Fig 5.1 Xilinx Vivado Project Navigator window 38

Fig 5.2 Creating new project window 39

Fig 5.3 Guiding wizard for the project 40

Fig 5.4 Creating a project name 40

Fig 5.5 Specifying the RTL Project 41

Fig 5.6 Choosing a board for project 41

Fig 5.7 Project summary 42

Fig 5.8 Main window for the project 43

Fig 5.9 Project settings window 43

Fig 5.10 Adding the source files 44

Fig 5.11 Wizard that shows to the design source 44

Fig 5.12 Creating a new file name for new design source 45

Fig 5.13 Selecting the type of file and location 45

Fig 5.14 Module defining with ports 46

Fig 5.15 Creating the simulation sources 47

Fig 6.1 Values comparison in MATLAB 48

Fig 6.2 DDFS architecture using LUT approach 50

Fig 6.3 DDFS architecture using CORDIC approach 51

iii

List of Tables Page no.

Table 2.1 Sine angle generation table 10

Table 2.2 Angles to the values stored in LUT 12

Table 3.1 Choosing the angles 22

Table 6.1 Time comparisons 48

Table 6.2 Sine and Cosine values comparison in XILINX 49

Table 6.3 Memory utilization in LUT approach 52

Table 6.4 Memory utilization in CORDIC approach 52

Table 6.5 Frequency comparison 53

iv

List of Abbreviations Page no.

PLL - Phase Locked loop 5

DDFS - Direct Digital Frequency Synthesizer 5

LUT - Look Up Table 6

DAC - Digital to Analog Converter 6

FSK - Frequency Shift Keying 13

CORDIC -Coordinate Rotation Digital Computer 16

DSP - Digital Signal Processing 16

DIP - Digital Image Processing 16

FPGA - Field Programmable Gate Array 23

RTL - Register Transfer Level 31

HDL - Hardware Description Language 31

VHDL - Verilog Hardware Description Language 36

MATLAB - Matrix Laboratory 36

GUI - Graphical User Interface 36

ISE - Integrated Synthesis Environment 37

1

CHAPTER -1

INTRODUCTION

1.1 Introduction to Sine and Cosine

Sine is a trigonometric function of an angle. It has a number of properties, such as being

periodic and odd. In the context of a triangle, for the specified angle, sine is the ratio of the length of

the side that is OPPOSITE the angle to the length of the longest side, or HYPOTENUSE, of the

triangle.

Figure 1.1 Representation of sine angle

sin(α)=opposite/hypotenuse

Like mentioned above, the sine function is periodic, which means that it is a function

returning to the same value at regular intervals. Sine has a period of 2π, which means we can write it

as:

sin (α) = sin(α+2π)

sin (α) = sin(α+2kπ), k ∈ all integers

Figure 1.2 Sinusoidal Waveform

2

The sine of any angle can vary from −1 to +1. For example, the sine of 0° is 0 and the

sine of 90° is 1. The sine of 270° is −1 and when we get to 360°, we are back to zero again.

Cosine is a trigonometric function of an angle. It has a number of properties, such as being

periodic and even. In the context of a triangle, for the specified angle, cosine is the ratio of the length

of the side that is ADJACENT the angle to the length of the longest side, or HYPOTENUSE, of

the triangle.

Figure 1.3 Representation of Cosine angle

Once a triangle to analyse is chosen, we can write:

cos(α)=adjacent/hypotenuse

Like mentioned above, the cosine function is periodic, which means that it is a function

returning to the same value at regular intervals. Cosine has a period of 2π, which means we can write

it as:

cos(α)=cos(α+2π)

or, in a more general sense,

cos (α)= cos(α+2kπ), k ∈ all integers

Figure 1.4 Cosine waveform

3

1.2 Different types of methods for implementing sine and cosine waves

A key requirement across a multitude of industries is to accurately produce, easily

manipulate, and quickly change waveforms of various frequencies and types. Whether a

wideband transceiver requires an agile low-phase-noise frequency source with excellent

spurious-free dynamic performance or an industrial measurement and control system needs a

stable frequency stimulus, the ability to quickly, easily, and cost effectively generate an

adjustable waveform while maintaining phase continuity is a critical design which is required.

It is not uncommon to need a sine wave but how do you generate it? The “best” or most

appropriate method for a particular application depends on several things such as:

• Frequency,

• Purity required,

• Amplitude,

• Possible synchronization with another frequency,

• Variable frequency and/or amplitude.

There are different types of methods for generating sine and cosine waveforms:

1.2.1 Wien Bridge Oscillator

1.2.2 Phase-shift Oscillator

1.2.3 PLL Method

1.2.4 DDFS

1.2.1 Wien Bridge Oscillator

A popular low frequency (audio, and up to about 100 kHz or so) sine wave oscillator is

the Wien bridge shown in Figure 1.5

Figure 1.5 Wien bridge oscillator

4

It uses an RC network that produces a zero-degree phase shift from output back to the

input, producing positive feedback that, in turn, produces oscillation. An op-amp is used to

produce a gain of three that offsets the attenuation of the RC network. With a net closed loop

gain of one, the circuit oscillates at a frequency determined by the values of the RC network:

f =
1

2𝜋𝑅𝐶

This circuit works great and produces a very clean low distortion sine wave. Its problem

is that instabilities in the gain and phase can cause the circuit to go out of oscillation completely,

or go into saturation producing a clipped sine wave or square wave. Some compensation

components are usually added to eliminate this problem.

1.2.2 Phase-shift Oscillator

A popular way to make a sine wave oscillator is to use an RC network to produce a

180-degree phase shift to use in the feedback path of an inverting amplifier. Setting the gain of

the amplifier to offset the RC network attenuation will produce oscillation. There are multiple

variations of phase shifters, including a Twin-T RC network and cascaded RC high pass

sections that produce either 45 or 60 degree shifts in each stage. The amplifier can be a single

transistor, single op-amp, or multiple op-amps. Figure shows one popular variation.

Figure 1.6 Phase-shift Oscillator

These oscillators produce a very pure low distortion sine wave. However, the frequency

is fixed at the point where each RC section produces a 60-degree phase shift. That approximate

frequency is:

f =
1

2.6𝑅𝐶

 In the circuit of Figure, the frequency should be about 3.85 kHz.

5

A fixed frequency is a disadvantage, but for a single frequency is good. The pure output

needs to be buffered with an op-amp follower if you are going to drive a load.

1.2.3 Phase Locked Loop

A phase-locked loop is a feedback loop comprising: a phase comparator, a divider, and

a voltage-controlled oscillator (VCO). The phase comparator compares a reference frequency

with the output frequency (usually divided down by a factor, N), The error voltage generated

by the phase comparator is applied to the VCO, which generates the output frequency. When

the loop has settled, the output will bear an accurate relationship to the reference in frequency

and/or phase. PLLs have long been recognized as superior devices for low phase noise and

high spurious-free dynamic range (SFDR) applications requiring high fidelity and stable

signals in a specific band of interest.

Their inability to accurately and quickly tune the frequency output and waveform and

their slow response limits their suitability for applications such as agile frequency hopping and

some frequency- and phase-shift keying applications.

Figure 1.7 Phase locked loop

1.2.4 Direct Digital Frequency Synthesizer

 Direct Digital Frequency Synthesis (DDFS) is a multi-step process of generating

sinusoidal analogue waveforms. DDFS has a wide application in the modern communication

era such as radio receivers, mobile telephones, radio telephones, walkie-talkies, CB radios,

satellite receivers and none the less GPS systems. Traditional designs found in literature of

high bandwidth frequency synthesizers make use of a Phase Locked-Loop (PLL) approach.

The PLL offers very good wide tuning bandwidth due to the use of a programmable divider as

compared to DDFS approach. On the other hand, DDFS provides many significant advantages

such as fast settling time, sub-Hertz frequency resolution, continuous-phase switching response

and low phase noise. One key design parameter of the DDFS is a Look Up Table (LUT). The

response time, the power consumption and the size of the DDFS approach are factors that

6

depend on the size of the LUT. In addition to that, the resolution and the size of DDFS are also

dependable on the size of the phase accumulator.

Figure 1.8 Direct digital frequency synthesiser.

 It begins with a read-only memory (ROM) that stores a series of binary values that

represent values that follow the trigonometry equation for a sine wave. These values are then

read out of the ROM one at a time and applied to a digital-to-analogue converter (DAC). A

clock signal steps an address counter that then accesses the sine values in ROM sequentially,

and sends them to the DAC. The DAC generates an analogue output signal that is proportional

to the binary value from the ROM. What you get is a stepped approximation of a sine wave.

Figure 1.9 A stepped approximation of a sine wave

 If you use enough samples and use more bits for the binary value, the steps will be

smaller and a more fine-grained sine wave will occur. The frequency of the sine wave depends

on the number of samples or values you use for the sine wave and the frequency of the clock

signal that reads the values out of the ROM. If the steps are too large, you can pass the stepped

signal through a low pass filter to smooth it out.

7

CHAPTER-2

DIRECT DIGITAL FREQUENCY SYNTHESIZER

2.1 Introduction to DDFS

Direct digital synthesis (DDS) is a method of producing an analogue waveform—

usually a sine wave—by generating a time-varying signal in digital form and then performing

a digital-to-analogue conversion. They are suitable for portable low battery drain trans

receivers. They are also capable of being incorporated with different digital modulation by

using different processing methods DDS devices are very compact and draw little power.

DDFS (Direct Digital Frequency Synthesizer) is a novel frequency synthesis

technology with a huge relative bandwidth, quick frequency conversion time, high resolution,

and outstanding phase consistency. This DDFS architecture is mostly used in modern

communication.

2.2 Performance of DDFS

Digital synthesis is based on a phase accumulator which generates a series of digital

states, the value of which increases linearly, forming a numeric ramp. This signal is made

periodic and represents the instantaneous phase of the output waveform, from zero to 2pi

radians. This is the digital input to a lookup table which converts the numeric ramp into a sine

wave. While the most common DDS output waveform is the sine wave; ramps, triangle waves,

and square waves are also easily generated.

Figure 2.1 DDFS Architecture

The direct digital synthesizer is based on a phase accumulator which generates the

instantaneous phase of a waveform. A lookup table provides the phase to amplitude conversion

which is applied to a digital-to-analogue converter, producing the desired analogue output after

filtering.

The output of the phase to amplitude lookup table is sent to a digital-to-analogue

converter (DAC) and is converted into an analogue waveform, which is most commonly

sinusoidal. Since the input to the DAC is a series of sampled values, the output has quantization

steps. These steps produce spectral images at multiples of the sample rate in the frequency

8

domain which are not desired. A low-pass filter, placed after the DAC, suppresses these

unwanted spectral responses.

The phase accumulator:

The phase accumulator is a modulo N counter that has 2N digital states which are

incremented for each system clock input pulse. The size of the increment depends on the value

of the tuning word, M, applied to the accumulator adder stage. The tuning word fixes the step

size of the counter increment. This will determine the frequency of the output waveform.

The phase accumulator generally has from 24 to 48 bits; at 24 bits there are 224 or

16,777,216 states. This number represents the number of phase values between 0 and 2p

radians, or the achievable phase increment. For a 24-bit phase accumulator, the phase

resolution is 3.74 E-7 radians. If a larger phase accumulator is used, the phase increment

becomes even finer.

 One way of visualizing the operation of the phase accumulator is to look at the

accumulator operation as a phase wheel

Figure 2.2 Digital Phase Wheel

 A simplified view of a 16-state phase accumulator operation using a phase wheel to

visualize how the tuning word affects the output frequency of the DDS. (Image source: Digi-

Key Electronics)

9

The accumulator states are periodic and are represented as lying on a circle. Dots on

the circle represent all the phase states of the accumulator. In this case, for simplicity, the

accumulator has 16 states. If the tuning word is equal to one, as in the top diagram, then the

step increment at each clock is one, and all states are selected during the full period.

 Projected to the right of the phase wheel is the analogue output for each state. As this

is a quantized device, the analogue output holds its current state until the clock advances the

phase wheel to its next state. The output waveform consists of a single cycle of the quantized

sine wave containing sixteen values.

 In the lower diagram the tuning word value is set to two. With this setting, every other

state on the phase wheel is selected. The analogue output now consists of two cycles, each with

eight amplitudes, giving a total of sixteen states. With the tuning word set to two, the output

frequency is now twice the previously obtained value.

 The output frequency of the DDS is set by the tuning word value and increases

proportionally to the value of the tuning word. The sample rate remains fixed at the system

clock rate, and the time between output samples is constant. The output frequency depends on

the tuning word increment, so as the tuning word value increases there are fewer steps in each

output cycle, thereby increasing the frequency. The tuning word can be increased until there

are only two samples per cycle, which brings the DDS output to its Nyquist frequency, or half

the system clock rate. Generally, the DDS is limited by design to always have an output

frequency that is less than the Nyquist limit.

Along with the system clock frequency, the output frequency of the DDS is also

dependent upon the tuning word value, and the length of the accumulator. It is expressed by

Equation.

fout =
𝑀∗𝑓𝑐

2𝑁
…..……………………………………………………….…………… (2.1)

Where:

fout is the DDS output frequency

M is the tuning word value

fc is the system clock frequency

N is the length of the phase accumulator

10

The output of the phase accumulator, which is the instantaneous phase of the output

waveform, is used to drive the phase to amplitude converter. The phase to amplitude converter

outputs a digital word, the value of which is the amplitude of the sine waveform for the input

phase.

 Note that the number of bits used to drive the phase to amplitude converter is less than

that used for the phase accumulator. This is referred to as phase truncation and is used to reduce

the die area and power consumption of the digital stages after the phase accumulator. While it

does cause some spurious spectral components, called truncation spurs, they are minimized by

careful design.

 E.g. Let our required frequency be f0= 1 KHz and let N=5 bits and for easy

simplification fclk= 32 KHz

Now,

f0 = (W*fclk)/2
N

1 = W * 32 / 32

W = 1

Sine Values N-bit binary numbers

Sin(0) = 0 00000

Sin(5) = 0.0871 00001

Sin(10) = 0.173 00010

Sin(15) = 0.2588 00011

Sin(20) = 0.342 00100

Table 2.1 Sine angle generation table

• Initially let N-bit numbers be N = 00000

• This N is used as an index to ROM, now o/p will be 0

• For next clock pulse, N=00001 then o/p = 0.0871

• For next clock pulse, N=00010 then o/p = 0.173

• For next clock pulse, N=00011 then o/p = 0.2588

• For next clock pulse, N=00100 then o/p = 0.342

• So, to generate a value of 20 degrees, it takes 4 clock cycles.

11

Figure 2.3 Graphical representation of sine angle generation (1)

E.g., Now let the required frequency be f0 = 2 KHz

 2 = W * 32/ 32

 W = 2

• Let N = 00000 be the initial value then the o/p will be 0

• For 1st clock cycle, N = 00010 then the o/p = 0.173

• For 2nd clock cycle, N = 00100 then the o/p = 0.342

• So, here to generate a value of 20 degrees, we just require 2 clock cycles i.e., the wave

is compressed when compared to that of f0 = 1 kHz.

Figure 2.4 Graphical representation of sine angle generation

12

2.3 Improved DDFS Architecture:

 The basic design of DDFS architecture is improved by exploiting the symmetry of sine

and cosine waves. The output of the accumulator is truncated from N to L bits to reduce the

memory requirement.

Figure 2.5 Modified DDFS Architecture

 A complete period 0 to 2pi of sine and cosine waves can be generated from values of the

two signals from 0 to pi/4. The L-3 bits are used to address the memories, and then three most

significant bits (MSBs) of the address are used to map the values to generate complete periods

of cosine and sine.

 A ROM/RAM based DDFS requires two 2L-3 memories of width M. The design takes up

a large area and dissipates significant power. In reduced memory concept, L-3 bits are used to

store the values of cosine and sine values from (0 to 𝝿/4) and ‘3’ most significant bits are used

to map the values of remaining angles to the values Stored in LUT’s i.e.

Table 2.2 Angles to the values stored in LUT

Three MSB bits Remaining angles

000 0 – 𝜋/4

001 𝜋/4 − 𝜋/2

010 𝜋/2 − 3𝜋/4

011 3𝜋/4 − 𝜋

100 𝜋 − 5𝜋/4

101 5𝜋/4 − 3𝜋/2

110 3𝜋/2 − 7𝜋/4

111 7𝜋/4 − 2𝜋

13

2.4 Frequency Shift Keying (FSK) using DDFS:

 Binary frequency-shift keying (usually referred to simply as FSK) is one of the simplest

forms of data encoding. The data is transmitted by shifting the frequency of a continuous carrier

to one of two discrete frequencies (hence binary). One frequency, f1, (perhaps the higher) is

designated as the mark frequency (binary one) and the other, f0, as the space frequency (binary

zero). Figure 2.6 shows an example of the relationship between the mark-space data and the

transmitted signal.

Figure 2.6 FSK Modulation

 This encoding scheme is easily implemented using a DDFS. The DDFS frequency

tuning word, representing the output frequencies, is set to the appropriate values to

generate f0 and f1 as they occur in the pattern of 0s and 1s to be transmitted. The user programs

the two required tuning words into the device before transmission. In this case, the MUX will

be used to select the appropriate frequency word. The 2 x 1 MUX contains two selection lines

(s1, s0) in which the Modulating signal is given as input which contains the data in binary format

which is either 0 or 1. If the Data is bit-0 then first tuning word will be given as input to the

DDFS through MUX and the respective frequency output will be obtained. If the Data is bit-1

then second tuning word will be given as input to the DDFS through MUX. The block diagram

in Figure 2.7 demonstrates a simple implementation of FSK encoding.

Figure 2.7 A DDFS-based FSK Modulator

14

2.5 Verilog Program for implementing Basic DDFS

 In the Basic DDFS the required inputs are clock input, frequency control word which

are given to the phase accumulator for successive increments. The ROM table should be created

for storing the values of all samples of sine. The all required sine samples are obtained from

MATLAB and then the ROM table of 1024 values of each size 16 bits are created and stored

as memory file in VIVADO. The accumulator register is initialized and then after every clock

cycle the accumulator register is incremented by frequency control word, then the first 10-bits

of the accumulator register indicates the address of the sine values stored in the ROM. The

obtained values are assigned to the output which are in digital form and can viewed in Analog

form using VIVADO Simulator.

Program:

timescale 1ns / 1ps

//module creation

module sine_dds(

 input clk ,

 input [31:0] fcw,

 output [15:0] dds_sin

);

reg signed [15:0] rom_memory [1023:0]; //ROM memory creation

initial begin

 $readmemh("sine.mem", rom_memory);

end

 reg [31:0] accu;

 wire [9:0] lut_index;

initial begin

accu <= 32'd0; // Accumulator is initialized with the zeros

end

always@(posedge clk)

begin

 accu <= accu + fcw;

 // Accumulator is incremented with fcw for every clock cycle

end

15

assign lut_index = accu[31:22];

 // The first 10 bits will be the index of ROM

assign dds_sin = rom_memory[lut_index];

// The value at that address will be assigned to the output

endmodule

Calculation:

 The output frequency of a DDFS device is determined by the given formula for output

frequency. The length of the phase accumulator is the length of frequency control word,

which determines the degree of frequency control word resolution of the DDFS

implementation. Let’s find the frequency control word for an output frequency of 5 KHz

where reference clock is 100 MHz and control word length is 32 bits (binary). The Resulting

equation would be:

5000 = (fcw x 100MHz)/ (2^32)

fcw = (2^32 x 5000)/(100MHz)

fcw = 214750

Loading this value of fcw into the frequency control register would result in a output frequency

of 5KHz, given a reference clock frequency of 100MHz.

16

CHAPTER – 3

CORDIC METHODOLOGY

3.1 Introduction to CORDIC

CORDIC (for Coordinate Rotation Digital Computer), also known as Volder's

algorithm, is a simple and efficient algorithm to calculate hyperbolic and trigonometric

functions, typically converging with one digit (or bit) per iteration. CORDIC is used to

calculate trigonometric, hyperbolic functions, square roots, multiplications, divisions etc.

These can be achieved by arbitrary base, typically converging with bit per iteration. CORDIC

is therefore also an example of digit-by-digit algorithms. CORDIC and closely related methods

known as pseudo multiplication and pseudo-division or factor combining are commonly used

when no hardware multiplier is available (e.g., in simple microcontrollers and FPGAs), as the

only operations it requires are addition, subtraction, bit shift and table lookup. As such, they

belong to the class of shift-and-add algorithms.

3.1.1 Importance of CORDIC

 CORDIC Algorithm is applicable for square root, logarithmic, exponential function and

for digital computer. Unit trigonometric functions are crucial functions like sine cosine

functions can be computed easily.

Present technology and limitations on power, operating frequency and energy

consumption, on generating trigonometric functions using multiplier divider adder takes more

time and complex. To reduce CORDIC algorithm converted to hardware known as CORDIC

processor finally it reduces the use of hardware multiplier.

3.1.2 CORDIC Applications

• Signal And Image Processing

• Communication Systems

• Robotics

• 3D Graphs

• Aerospace Application

• Different DSP And DIP Filters

• Network Security

• Biometric

17

3.2 Modes of Operation

3.2.1 Rotation Mode

CORDIC can be used to calculate a number of different functions. This explanation

shows how to use CORDIC in rotation mode to calculate the sine and cosine of an angle,

assuming that the desired angle is given in radians and represented in a fixed-point format. To

determine the sine or cosine for an angle, the y or x coordinate of a point on the unit

circle corresponding to the desired angle must be found. Using CORDIC, one would start with

the vector v0.

 In the first iteration, this vector is rotated 45° counter clockwise to get the vector .

Successive iterations rotate the vector in one or the other direction by size-decreasing steps,

until the desired angle has been achieved.

Figure 3.1 Illustration of the CORDIC Algorithm

....………………………………………………………………….. (3.1)

The rotation matrix is given by

https://en.wikipedia.org/wiki/Radian
https://en.wikipedia.org/wiki/Unit_circle
https://en.wikipedia.org/wiki/Unit_circle

18

Using the following two trigonometric identities:

The rotation matrix becomes

The expression for the rotated vector is given by

…………………… (3.2)

Where xi and yi are the components of vi . Restricting the angles yi such that tan(ɣi) =

±2-i , the multiplication with the tangent can be replaced by a division by a power of two, which

is efficiently done in digital computer hardware using a bit shift. The expression then becomes

Where,

 And, σi is used to determine the direction of the rotation: if the angle ɣi is positive,

then σi is +1, otherwise it is −1.

Ki can be ignored in the iterative process and then applied afterward with a scaling factor

……………………………………….… (3.3)

https://en.wikipedia.org/wiki/Bit_shift

19

which is calculated in advance and stored in a table or as a single constant, if the number of

iterations is fixed. This correction could also be made in advance, by scaling V0 and hence

saving a multiplication. Additionally, it can be noted that

to allow further reduction of the algorithm's complexity. Some applications may avoid

correcting for K altogether, resulting in a processing gain A :

 After a sufficient number of iterations, the vector's angle will be close to the wanted

angle𝛽. For most ordinary purposes, 40 iterations (n = 40) is sufficient to obtain the correct

result to the 10th decimal place.

 The only task left is to determine whether the rotation should be clockwise or counter

clockwise at each iteration (choosing the value of 𝛽). This is done by keeping track of how

much the angle was rotated at each iteration and subtracting that from the wanted angle; then

in order to get closer to the wanted angle 𝛽, 𝛽 n+1 if is positive, the rotation is clockwise,

otherwise it is negative and the rotation is counter clockwise:

…………………………. (3.4)

 The values of ɣn must also be precomputed and stored. But for small angles, arc tan (ɣn)

= ɣn in fixed-point representation, reducing table size.

As can be seen in the illustration above, the sine of the angle 𝛽 is the y coordinate of the final

vector Vn while the x coordinate is the cosine value.

3.2.2 Vectoring Mode

 In this type of mode, the y-axis of the input vector is required to be zero. So, this

mode calculates the phase and magnitude of the input vector. The rotation-mode algorithm

described above can rotate any vector (not only a unit vector aligned along the x axis) by an

angle between −90° and +90°. Decisions on the direction of the rotation depend on being

positive or negative.

 The vectoring-mode of operation requires a slight modification of the algorithm. It

starts with a vector the x coordinate of which is positive and the y coordinate is arbitrary.

Successive rotations have the goal of rotating the vector to the x axis (and therefore reducing

the y coordinate to zero).

 At each step, the value of y determines the direction of the rotation. The final value

of contains the total angle of rotation. The final value of x will be the magnitude of the original

20

vector scaled by K. So, an obvious use of the vectoring mode is the transformation from

rectangular to polar coordinates.

3.3 Methodology Used

 A convergence method for evaluating trigonometric functions

• If a unit-length vector with end point at (X, Y) = (1,0) is rotated by an angle Z, its new

end point will be at (X, Y) = (cos z, sin z).

• Simple hardware – shifters, adders, lookup table.

• Family of algorithms: Rotation, Vector mode

1. Circular rotations

2. Linear rotations

3. Hyperbolic rotations

3.4 Real CORDIC Rotations

Figure 3.2 Real CORDIC Rotations

If vector OEi is rotated about the origin by an angle I, the new vector OEi+1 will have

the coordinates

Real rotation: Ei+1

Xi+1 = Xi cos 𝛼i -Yi sin 𝛼i…………………………………………….………… (3.5)

Yi+1 = Yi cos 𝛼i + Xi sin 𝛼i……………………………………………………... (3.6)

Zi+1 = Zi – 𝛼i……………………………………………………….….……..…. (3.7)

The variable Z allows us to keep track of the total rotation over several steps. If Zo is

the initial rotation goal and if the 𝛼i angles are selected at each step such that after n iterations

Za tends to 0, then E₁ will be the end point after rotation by angle Zo.

21

3.5 Pseudo CORDIC Rotations

Figure 3.3 Pseudo CORDIC rotations

Pseudo rotations increase the vector length to

Ri+1 = Ri (1 + tan2 𝛼i)
1/2………………………………………………..…….… (3.8)

Pseudo rotation: E’
i+1

Xi+1 = Xi - Yi tan 𝛼i……………………………………………………...…..... (3.9)

Yi+1 = Yi + Xi tan 𝛼i………………………………………………...………... (3.10)

Zi+1 = Zi – 𝛼i………………………………………………..………………... (3.11)

3.6 Basic CORDIC Rotations:

To simplify pseudo rotations, pick 𝛼i such that tan 𝛼i = di2
-i where di ∈ {-1,1}. Then

Xi+1 = Xi - Yi di2
-i……………………………………………………….….. (3.12)

Yi+1 = Yi + Xi di2
-i……………………………………………...…………... (3.13)

Zi+1 = Zi – di tan-12-i……………………………………………. ………......(3.14)

Computation of Xi+1 and Yi+1 requires an i-bit right shift and an add/subtract; Zi+1 only

requires an add/subtract and one table lookup. Precompute and store the function tan-1 2-i.

22

 Choosing angles:

The angles to be taken for every ith iteration is precomputed and stored for easy access

of all the values in computing sine and cosine at every iteration. The below table 3.1 shows the

values of angles to chosen.

i 𝜶i = 2-i Ei = tan-12-i di Zi-diEi = zi+1

0 1.000000 45.0000000 1 30.00-45.00 = -15.00

1 0.500000 26.565051 -1 -15.00 +26.57 = 11.57

2 0.250000 14.036243 1 11.57 – 14.04 = -2.47

3 0.125000 7.125016 -1 -2.47 + 7.13 =4.66

4 0.062500 3.576334 1 4.66 – 3.58 =1.08

5 0.031250 1.789910 1 1.08 -1.79 = -0.71

6 0.015625 0.895174 -1 -0.71+0.90 = 0.19

7 0.007813 0.447614 1 0.19 -0.45 = -0.26

8 0.003906 0.223811 -1 -0.26 +0.22 =-0.04

9 0.001953 0.111906 -1 -0.04 + 0.11 =0.07

Table 3.1 Choosing the predefined angles

For example ,

Figure 3.4 Illustration of the first three rotations for a Z of 300

 If we want to calculate sine and cosine of a required angle, we should rotate the vector

from the initial position by few successive angles which are predefined in the ROM. The angles

required for every rotation which are stored in ROM are tabulated in Table 3.1.

 For example, if required angle is 300 then make Z = 300 and then compute the further

iterations as shown in the Figure 3.4.

23

3.7 Hardware Mapping

CORDIC is generally faster than other approaches when a hardware multiplier is

unavailable (e.g., in a microcontroller) or when the number of gates required to implement the

function is to be minimized (e.g., in an FPGA). On the other hand, when a hardware multiplier

is available (e.g., in a DSP microprocessor), table lookup methods and power series are

generally faster than CORDIC.

A straight forward hardware implementation for CORDIC arithmetic is shown below.

It requires three registers for x, y and z, a look up table to store the values of αi=tan-1 2-i two

shifter to supply the terms 2-i x and 2-i y to the adder/subtractor units.

Figure 3.5 Hardware Mapping

These CEs are cascaded together for a fully parallel implementation. That the above

CORDIC algorithm computes sin and cosine of a particular angle which should be in the range

of -54.88 degrees to 54.88 degrees.

When we want to calculate the sin and cosine of 70 degrees the 𝜃0 is taken as 70 degrees

and the CORDIC tries to make the resultant angle equal to 0 it applies a negative rotation

𝛥𝜃=tan-1 20 to bring the angle 𝜃1=16.44. Two more negative rotations take the angle to the

negative side with 𝜃3 = -4.73. The algorithm now gives positive rotation𝛥𝜃3 = tan-1 2-3 and

keeps working to make the final angle equal to 0, and in the final iteration the angle 𝜃16 =

0.0008 degrees.

24

Figure 3.6 Pipelined FDA architecture of CORDIC algorithm

 At first, initial coordinate values and required angle will be given to the first CORDIC

element. At every CORDIC element, the pre-computed angle will be given as input to it. The

corresponding result of the first CORDIC element will be the first iteration values which will

be given to the next CORDIC element for the further iterations. For further iterations, the

CORDIC elements will be cascaded serially one after the another. The number of CORDIC

elements that we require depends on accuracy of the sine and cosine values. At final iteration,

coordinates obtained will be sine and cosine of required angle.

3.8 Time Shared Architecture

Figure 3.7 Four slow folded architecture by a folding factor of 4

25

Here in the before diagram, we have seen that the four CORDIC elements have been

arranged in cascaded form and the output of last CORDIC element has been given to the first

CORDIC element. Before giving to the first CORDIC element it is stored in register R0.

The main idea of this time-shared architecture is to achieve a greater number of outputs

in less time interval or else we can say that in a smaller number of clock cycles. For achieving

that we have arranged this CORDIC elements in this format.

The working mainly starts from taking four inputs and giving one after other inputs for

every clock. After first clock the outputs of first CORDIC element will be stored in register

R1. And for next cycle the output of first CORDIC element is given to next CORDIC element

and the new input is given to the first CORDIC element. In the same way after four clock cycles

all the four inputs will be given to the architecture. And after fixed number of cycles/iterations

the outputs will be obtained.

Figure 3.8 Timing diagram of 4 slow folded CORDIC architecture

 In the above-mentioned Figure 3.8 we can observe the Timing diagram of 4

slow folded CORDIC architecture. In the first clock cycle the first input first iteration value

stored in R1 and after in second clock cycle the second input first iteration value stored in R1

and first input second iteration value stored in R2. And after further clock cycles all the outputs

of the given inputs will calculated in fixed number of iterations because of this folder

architecture, which is one of the biggest advantage.

3.9 CORDIC Based DDFS Architecture

 Direct Digital Frequency Synthesis (DDFS) is a technique for creating an

analogue waveform—usually a sine wave—by creating a time-varying signal in digital form

and then converting it to analogue. It was written in Verilog and then emulated with XILINX

VIVADO. DDFS is implemented in a variety of ways. The frequency control word is delivered

to the phase accumulator in a conventional DDFS, which determines the DDFS' output

26

frequency. The frequency control word is added to the accumulator register for each clock

pulse. The phase of the output waveform is represented by the value in the accumulator register.

Figure 3.9 CORDIC based DDFS Architecture

When the frequency control word is large, fewer phase angles are taken, and the time

period is reduced. When the frequency control word is tiny, a larger number of phase angles

are taken, resulting in a longer waveform time period. The CORDIC architecture is used in this

application. The CORDIC algorithm is used instead of ROM to compute the sin and cosine of

the desired angle by rotating the original vector. Each clock pulse alters the phase angle in the

accumulator register, and the CORDIC algorithm computes the sine and cosine of each phase

angle in a fixed number of iterations to generate a digital sinusoidal waveform.

3.9.1 Calculations:

The output frequency of a DDFS device is determined by the above given formula

for output frequency. The length of the phase accumulator is the length of frequency control

word, which determines the degree of frequency control word resolution of the DDFS

implementation. Let’s find the frequency control word for an output frequency of 1 KHz where

reference clock is 100 MHz and control word length is 32 bits (binary). The Resulting equation

would be:

1000 = (fcw x 100MHz)/ (2^32)

fcw = (2^32 x 1000)/(100MHz)

fcw = 42950

Loading this value of fcw into the frequency control register would result in a output frequency

of 1KHz, given a reference clock frequency of 100MHz.

27

3.10 Verilog Implementation of CORDIC based DDFS architecture

In the CORDIC based DDFS architecture the required inputs are Xin, Yin and angle.

The 32 bit angle value is the accumulator register which is initialized and then after every clock

cycle, it is incremented by frequency control word, then the 32 bit angle value will be given to

the CORDIC element that computes the Sine and Cosine values of required angle. The obtained

values are assigned to the output which are in digital form and can viewed in Analog form

using VIVADO Simulator.

 Program:

`timescale 1 ns/100 ps

 module procor (clock, angle, Xin, Yin, Cosine, Sine);

 parameter c = 16; // bit width of input and output data

 localparam STG = c ; // similar bit width of vectors X and Y

 input clock;

 input signed [31:0] angle;

 input signed [c-1:0] Xin;

 input signed [c-1:0] Yin;

 output signed [c :0] Cosine;

 output signed [c :0] Sine;

 wire signed [31:0] tan_inverse [0:30];

 // Assigning tan_inverse table

 assign tan_inverse[00] = 32'b00100000000000000000000000000000;

 // 45.000 degrees -> atan(2^0)

 assign tan_inverse[01] = 32'b00010010111001000000010100011101;

 // 26.565 degrees -> atan(2^-1)

 assign tan_inverse[02] = 32'b00001001111110110011100001011011;

 assign tan_inverse[03] = 32'b00000101000100010001000111010100;

 assign tan_inverse[04] = 32'b00000010100010110000110101000011;

 assign tan_inverse[05] = 32'b00000001010001011101011111100001;

28

 assign tan_inverse[06] = 32'b00000000101000101111011000011110;

 assign tan_inverse[07] = 32'b00000000010100010111110001010101;

 assign tan_inverse[08] = 32'b00000000001010001011111001010011;

 assign tan_inverse[09] = 32'b00000000000101000101111100101110;

 assign tan_inverse[10] = 32'b00000000000010100010111110011000;

 assign tan_inverse[11] = 32'b00000000000001010001011111001100;

 assign tan_inverse[12] = 32'b00000000000000101000101111100110;

 assign tan_inverse[13] = 32'b00000000000000010100010111110011;

 assign tan_inverse[14] = 32'b00000000000000001010001011111001;

 assign tan_inverse[15] = 32'b00000000000000000101000101111101;

 assign tan_inverse[16] = 32'b00000000000000000010100010111110;

 assign tan_inverse[17] = 32'b00000000000000000001010001011111;

 assign tan_inverse[18] = 32'b00000000000000000000101000101111;

 assign tan_inverse[19] = 32'b00000000000000000000010100011000;

 assign tan_inverse[20] = 32'b00000000000000000000001010001100;

 assign tan_inverse[21] = 32'b00000000000000000000000101000110;

 assign tan_inverse[22] = 32'b00000000000000000000000010100011;

 assign tan_inverse[23] = 32'b00000000000000000000000001010001;

 assign tan_inverse[24] = 32'b00000000000000000000000000101000;

 assign tan_inverse[25] = 32'b00000000000000000000000000010100;

 assign tan_inverse[26] = 32'b00000000000000000000000000001010;

 assign tan_inverse[27] = 32'b00000000000000000000000000000101;

 assign tan_inverse[28] = 32'b00000000000000000000000000000010;

 assign tan_inverse[29] = 32'b00000000000000000000000000000001;

 assign tan_inverse[30] = 32'b00000000000000000000000000000000;

 //stage outputs

 reg signed [c :0] Co [0:STG-1];

 reg signed [c :0] Si [0:STG-1];

 reg signed [31:0] s [0:STG-1];

29

 // upper 2 bits = 2'b00 which represents 0 - π/2 range

 // upper 2 bits = 2'b01 which represents π /2 to π range

 // upper 2 bits = 2'b10 which represents π to 3* π /2 range (i.e. - π /2 to - π)

 // upper 2 bits = 2'b11 which represents 3* π /2 to 2* π range (i.e. 0 to - π /2)

 wire [1:0] quad;

 assign quad = angle[31:30];

 always @(posedge clock)

 begin

 // first 2 MSB bits will determine the quadrant

 case (quad)

 2'b00,

 2'b11: // no pre-rotation needed for these quadrants

 begin

 Co[0] <= Xin;

 Si[0] <= Yin;

 s[0] <= angle;

 end

 2'b01:

 begin

 Co[0] <= -Yin;

 Si[0] <= Xin;

 s[0] <= {2'b00,angle[29:0]}; // subtract pi/2 from angle for this quadrant

 end

 2'b10:

 begin

 Co[0] <= Yin;

 Si[0] <= -Xin;

 s[0] <= {2'b11,angle[29:0]}; // add pi/2 to angle for this quadrant

 end

30

 endcase

 end

 genvar i;

 generate

 for (i=0; i < (STG-1); i=i+1)

 begin: XYZ

 wire sign;

 wire signed [c :0] X_shift, Y_shift;

 assign X_shift = Co[i] >>> i; // shifting right

 assign Y_shift = Si[i] >>> i;

 assign sign = s[i][31]; // Z_sign = 1 if Z[i] < 0

 always @(posedge clock)

 begin

 // rotation of vectors

 Co[i+1] <= sign ? Co[i] + Y_shift : Co[i] - Y_shift;

 Si[i+1] <= sign ? Si[i] - X_shift : Si[i] + X_shift;

 s[i+1] <= sign ? s[i] + tan_inverse[i] : s[i] - tan_inverse[i];

 end

 end

 endgenerate

 // assigning output

 assign Cosine = Co[STG-1];

 assign Sine = Si[STG-1];

 endmodule

31

CHAPTER-4

VERILOG

4.1 Introduction to Verilog

Verilog is a HARDWARE DESCRIPTION LANGUAGE (HDL). It is a language used

for describing a digital system like a network switch or a microprocessor or a memory or a

flip−flop. It means, by using a HDL we can describe any digital hardware at any level. Designs,

which are described in HDL are independent of technology, very easy for designing and

debugging, and are normally more useful than schematics, particularly for large circuits.

4.1.1 Verilog Capabilities:

• Verilog is a case sensitive language.

• It is vendor independent which means a program can be executed in any simulator.

• It is human and machine readable. Thus, it can be used as an exchange language

between tools and designers.

• Verilog allows different levels of abstraction to be mixed in same model.

• Thus, a designer can define a hardware model in terms of switches, gates, RTL or

behavioural code using tools like synthesis tools and his netlist is used for gate level

simulation and for backend.

4.1.2 Data types in Verilog

4.1.2.1 Value Set

Verilog consists of, mainly, four basic values. All Verilog data types, which are used

in Verilog, store these values −

0 (logic zero, or false condition)

1 (logic one, or true condition)

x (unknown logic value)

z (high impedance state)

Use of x and z is very limited for synthesis.

 4.1.2.2 Wire

A wire is used to represent a physical wire in a circuit and it is used for connection of

gates or modules. The value of a wire can only be read and not assigned in a function or block.

A wire cannot store value but is always driven by a continuous assignment statement or by

connecting wire to output of a gate/module. Other specific types of wires are −

32

Wand (wired-AND) − here value of Wand is dependent on logical AND of all the device

drivers connected to it.

Wor (wired-OR) − here value of a Wor is dependent on logical OR of all the device drivers

connected to it.

Tri (three-state) − here all drivers connected to a tri must be z, except only one (which

determines value of tri).

4.1.2.3 Register:

A reg (register) is a data object, which is holding the value from one procedural

assignment to next one and are used only in different functions and procedural blocks. A reg

is a simple Verilog, variable-type register and can’t simply a physical register. In multi-bit

registers, the data is stored in the form of unsigned numbers and sign extension is not used.

Example −

reg c; // single 1-bit register variable

reg [5:0] gem; // a 6-bit vector;

reg [6:0] d, e; // two 7-bit variables

4.1.2.4 Input, Output, Inout

These keywords are used to declare input, output and bidirectional ports of a task or

module. Here input and inout ports, which are of wire type and output port is configured to be

of wire, reg, wand, wor or tri type. Always, default is wire type.

4.2 Program structure in Verilog:

• Module is a basic building block in Verilog.

• It provides necessary information about input and output ports but hides the internal

implementation.

 Syntax:

 module<module name>(input, output):

 ……….

 <logic of program>

 ………

 ………

 end module

 4.2.1 Declaration of input and output:

• After declaration of module in the next step is to define the input and output ports.

 e.g.: input a, b;

• If input and output are more than one bit i.e., either two or more bits then we can define

as below

 input [3:0] a, b; //four bit input (A3-A0&B3-B0)

33

 output [3:0] c; //four bit output (C3-C0)

4.3 Module declaration in Verilog

4.3.1 Verilog Module

 A module is a block of Verilog code that implements certain functionality. Modules

can be embedded within other modules, and a higher-level module can communicate with its

lower-level modules using their input and output ports.

 A module should be enclosed within a module and end module keywords. The name of

the module should be given right after the module keyword, and an optional list of ports may

be declared as well.

Syntax:

module < name>([port_list]);

//contents of module

endmodule

// A module can have an empty port_list

module name;

// Contents of the module

endmodule

 All variable declarations, functions, tasks, dataflow statements, and lower module

instances must be defined within the module and endmodule keywords.

4.3.2 Levels of Abstraction

 Verilog supports a design at many levels of abstraction. The major three are –

• The switch Level Modelling.

• Gate – level Modelling.

• The Data – Flow Level.

• The Behavioural or Procedural Level.

4.3.2.1 Switch level Modelling

 A circuit is defined by explicitly showing how to construct it using transistors like pmos

and nmos, predefined modules.

module inverter (out, in):

supply1 vdd;

nmosx1(out, in, gnd);

pmosx2(out, in, vdd);

endmodule

34

4.3.2.2. Gate Level modelling

 A circuit is defined by explicitly showing how to correct it using logic gates. Predefined

modules, and the connections between them. In this first we think of our circuit as a box or

module which is encapsulated from its outer environment, in such a way that its only

communication with the outer environment, is through input and output ports. We then set out

to describe structure within the module by explicitly describing its gates and sub modules, and

how they connect with one another as well as to the module ports. In other words, structural

modelling is used to draw a schematic diagram for the circuit. As an example, consider the full-

adder below.

module fulladder (a, b, sum, cout);

input a, b;

output sum, cout;

xor x1(a, b, y);

xor x2(a, b, y);

endmodule

4.3.2.3 Data-flow Modelling

 Dataflow modelling uses Boolean expressions and operators. In this we use assign

statement.

module fulladder (a, b, sum, Cout);

input a, b;

output sum, cout;

assign sum = a^b;

assign cout = a^b;

endmodule

4.3.2.4 Behavioural modelling

There are two types of procedural blocks in Verilog

Initial: initial blocks execute only once at time zero (start execution at time zero)

Always: always blocks loop to execute over and over again, in other words, as other words as

the name suggests, it executes always.

module fulladder (a, b, clk, sum);

input a, b, clk;

output sum;

always@ (posedgeclk)

 begin

sum= a+b;

endmodule

35

4.4 Implementation of Basic Programs Using Verilog:

4.4.1 Multiplexer:

module mux99(a ,b ,c ,d, sel, out);

input wire a,b,c,d;

input wire [1:0] sel;

output reg out;

always @ (a or b or c or d or sel)

begin

case (sel)

2'b00 : out <= a;

2'b01 : out <= b;

2'b10 : out <= c;

2'b11 : out <= d;

endcase

endmodule

4.4.2 Full Adder:

module fulladder99(a, b, cin, sum, cout);

input a, b, cin;

output sum,cout;

wire x, y, z

half_adder h1(.a(a), .b(b), .sum(x), .cout(y));

half_adder h2(.a(x), .b(cin), .sum(sum), .cout(z));

or or_1(cout, z, y);

endmodule

module half_adder(a, b, sum, cout);

input a, b;

output sum, cout;

xor xor_1 (sum, a, b);

and and_1 (cout, a, b);

endmodule

36

CHAPTER – 5

INTRODUCTION TO SOFTWARE TOOLS

5.1 Software Tools Used

5.1.1 MATLAB

MATLAB (Matrix Laboratory) is a programming platform developed by Math

Works, which uses its proprietary MATLAB programming language. The MATLAB

programming language is a matrix-based language which allows matrix manipulations,

plotting of functions and data, implementation of algorithms, creation of user interfaces, and

interfacing with programs written in other languages, including C, C++, C#, Java, Fortran and

Python. It is used in a wide range of application domains from Embedded Systems to AI,

mainly to analyse data, develop algorithms, and create models and applications.

Usage of MATLAB Software In This Project

• MATLAB is used here to implement the CORDIC algorithm from the scratch since

CORDIC has different modes available, we used MATLAB software to check those

techniques.

• It is used to do the time comparisons between the in-built codes available in MATLAB

and the CORDIC algorithm

• It is used to compare the accuracy of values between the values generated with the

CORDIC algorithm and the direct functions available in MATLAB.

• It is used to calculate the CPU-time required to implement the CORDIC algorithm.

5.1.2 MODELSIM

MODELSIM is a multi-language HDL simulation environment by Mentor Graphics,

for simulation of hardware description languages such as VHDL, Verilog and System C, and

includes a built-in C debugger MODELSIM can be used independently, or in conjunction with

Intel Quartus Prime, Xilinx ISE or XILINX VIVADO. Simulation is performed using the

graphical user interface (GUI), or automatically using scripts.

 ModelSim uses a unified kernel for simulation of all supported languages, and the

method of debugging embedded C code is the same as VHDL or Verilog.

ModelSim and QuestaSim products enable simulation, verification and debugging for

the following languages

• VHDL

• Verilog

• Verilog 2001

• System Verilog

• PSL

37

Usage of ModelSim in this project:

• We used ModelSim to implement the logic in Verilog.

• It is used to check the simulation results and graphs.

• Minimize the errors in the Verilog code.

5.1.3 XILINX VIVADO

 VIVADO enables developers to synthesize their designs, perform timing analysis

examine RTL diagrams, simulate a design's reaction to different stimuli, and configure the

target device with the programmer. VIVADO is a design environment for FPGA products

from Xilinx, and is tightly-coupled to the architecture of such chips, and cannot be used with

FPGA products from other vendors.

Language support

The VIVADO High-Level Synthesis compiler enables C, C++ and SystemC programs

to be directly targeted into Xilinx devices without the need to manually create RTL. VIVADO

HLS is widely reviewed to increase developer productivity, and is confirmed to support C++

classes, templates, functions and operator overloading.

 XILINX VIVADO enables simulation, verification and synthesis for the following

languages

● VHDL

● Verilog
● System Verilog

5.2 XILINX VIVADO ISE Design Suite (16.1 Version)

Xilinx is a powerful software tool that is used to design, synthesize, simulate, test and

verify digital circuit designs. The designer can describe the digital design by either using the

schematic entry tool or a hardware description language In this software we will create VHDL

design input files - the hardware description of the logic circuit, compile VHDL source files,

create a test bench and simulate the design to make sure of the correct operation of the design

(functional simulation). The purpose of this is to give new users an exposure to the basic and

necessary steps to implement and examine your own designs using ISE environment. In this,

we will design one simple module (OR gate), however, in the future, you will be designing

such modules and completing the overall circuit design from these existing files. A VHDL

input file in the Xilinx environment consists of Entity Declarations module name and interface

specifications (I/O) - list of input and output ports, their mode, which is direction of data flow.

and data type. Architecture defines a component's logic operation.

There are different styles for the architecture body: (i) Behavioural - set of sequential

assignment statements (ii) Data Flow - set of concurrent assignments o Structural - set of

interconnected components a combination of these could be used, but in this tutorial we will

use Dataflow. In its simplest form, the architectural body will take the following format,

38

regardless of the style: architecture architecture_name of entity_name is begin... -- statement

end architecture_name:

ISE (Integrated Software Environment) is a software tool produced by Xilinx for

synthesis and analysis of HDL designs, enabling the developer to synthesize ("compile") their

designs, perform timing analysis, examine RTL diagrams, simulate a design's reaction to

different simulation, and configure the target device with the programmer.

Xilinx is an American technology company, primarily a supplier of programmable

logic devices. It is known for inventing FPGA. The Xilinx ISE is primarily used for circuit

synthesis and design, while the Modelsim logic simulator is used for system-level testing.

5.3 ISE Project Navigator:

 In this section, we introduce the reader to the main components of an "ISE Project

Navigator" window, which allows us to manage our design files and move our design process

from creation to synthesis and to simulation phase.

Figure 5.1 Xilinx Vivado Project Navigator window

By opening the Xilinx vivado ISE suite, we will come to see the 3 main points. They are

1) Quick start

2) Tasks

3) Information Centre

In the Quick start block, we have create a new project, open project and open example project.

In the Tasks, We have Manage IP, open hardware manager, Xilinx Td store.

This section describes the four basic steps to working with a project.

39

Step 1----- Creating a New Project

This creates .xpr file and a working library.

Step 2 ---- Adding Items to project

Projects can reference or include source files, folders for organizations, simulations, and any

other files you want to associate with the project. You can copy files into the project directory

or simply create mappings to files in other locations.

Step 3 ---- Compiling the Files

This checks syntax and semantics and creates the pseudo machine code that Vivado uses for

simulation.

Step 4 --- Simulating a Design

This specifies the design unit you want to simulate and opens a structure tab in the workspace

panel. Your specify will be used to create a working library subdirectory within the Project

In order to start ISE double, click the desktop icon: Or click:

Creating a New Project

 After launching Vivado, from the start-up page click the “Create New Project” icon.

Alternatively, you can select New Project.

Figure 5.2 Creating new project window

The New Project wizard will launch, click the “Next>” button to proceed

40

Figure 5.3 Guiding wizard for the project

Enter a project name and select a project location. Make certain there are NO SPACES

in either. It’s not a bad idea to only use letters, numbers and underscores as well. If necessary

simply create a new directory for your Xilinx Vivado projects in your root drive. You will

likely always want to select the "Create project sub-directory" check-box as well. This keeps

things neatly organized with a directory for each project and helps avoid problems. Click the

"Next>" button to proceed.

Figure 5.4 Creating a project name

 Select the "RTL Project" radial and select the "Do not specify sources at this time"

check-box. If you don't select the check-box the wizard will take you through some additional

steps to optionally add pre-existing items such as VHDL or Verilog source files, Vivado IP

blocks, and XDC constraint files for device pin and timing configuration. For this first project

you will add the necessary items later Click the “Next >" button to proceed.

41

Figure 5.5 Specifying the RTL project

You need to filter down to and select the specific part number for your project. You

can physically read the markings on your chip or refer to your board's documentation to find

its part number. In the case of the Basys 3 it's the Artix-7 chip that's on the board, and the

filters shown will help you get to the correct device that's highlighted. Once you select the

correct device click the "Next>" button to proceed.

Figure 5.6 Choosing a board for project

Click the “Finish” button and Vivado will proceed to create your project as specified.

42

Figure 5.7 Project Summary

5.4 Steps for Design Entry:

5.4.1 Working through the Basic Project Flow:

 The Vivado project window contains a lot of information, and the information displayed

can change depending on what part of the design you currently have open as you work through

the steps of your project. Keep this in mind as you work through this guide, because if you

don't see a specific sub-window or sub-window tab it's possible you aren't in the correct part

of the design.

 The "Flow Navigator" on the left side of the screen has all the major project phases

organized from top to bottom in their natural chronological order. You begin in the "Project

Manager" portion of the flow and the header at the top of the screen next to the Flow Navigator

reflects this. This header and the corresponding highlighted section in the Flow Navigator will

tell you which phase of the design you have open.

43

Figure 5.8 Main window for the project

5.4.2 Project Manager

5.4.2.1 Project Settings

Begin by clicking on "Project Settings" under the Project Manager phase of the Flow

Navigator.

Figure 5.9 Project settings window

There are a lot of settings available here for all phases of the project flow, but for now

just select "System Verilog" from the drop-down for the "Target language" in the "General"

project settings and click the "OK" button.

44

5.4.2.2 Add sources

Now click on “Add Sources” under the Project Manager phase of the Flow Navigator

Figure 5.10 Adding the source files

Select the “Add or create Design sources” radial and then click the “Next>” button.

Figure 5.11 wizard that shows to the design source

Click the “Create File” button or click the green “+” symbol in the upper left corner and select

the “Create File…” option.

45

Figure 5.12 Creating a new file name for new design source

 Make sure the options shown are selected in the "Create Source File" popup, and for

the sake of following along enter "convolution (Gaussian filter)" for the "File name". Click the

"OK" button when finished.

 You can normally enter anything you like for the "File name" as long as it's valid, but

always make certain there are no spaces.

Figure 5.13 Selecting the type of file and location

Click the “Finish” button and VIVADO will then bring up the “Define Module” window.

46

5.4.2.3 Define a module

 You can use the "Define Module" window to automatically write some of the VHDL

code for you. Additional "I/O Port Definitions" can be added by either clicking the green "+”

symbol in the upper left or by simply clicking on the next empty line. The "Entity name" and

"Architecture name" will be the corresponding Verilog HDL identifiers used in the code, as

will whatever is typed in for each "Port Name". Any valid Verilog HDL identifier can be used

for any of these, but for the sake of following along enter the information as shown. Make sure

the proper "Direction" is set for each. Click the "OK" button when finished.

 Note that if you would rather write your own code from scratch you can simply click

the "Cancel" button and VIVADO will create a completely blank System Verilog VHDL

source file inside your project. If you click the "OK" button without defining any "I/O Port

Definitions" VIVADO will still write the basic Verilog HDL code structure but the port

definition will be empty and commented out for you to uncomment and fill later

 Also note that the port names here match the silkscreen reference designators of the

switches and LEDS on the Basys 3 board that will be utilized for the example. This is for the

convenience of those following along with the Basys 3, but should not be inferred as a

requirement by beginners; each name is simply an arbitrary identifier.

Figure 5.14 Module defining with ports

 The System Verilog HDL source file generated will be added to your project in the

"Design Sources" folder as shown. Double click it and it will open up in a new tab for you to

view/edit all the code here was generated by the previous "Define Module" window, and for

this example you only need to manually enter the three highlighted lines between the "begin"

and "end” keywords.

 If we want to create a simulation source we have to select a new simulation source by

night clicking the add source block in the panel.

47

Figure 5.15 Creating the simulation sources

48

CHAPTER 6

REPORTS AND SIMULATION RESULTS

6.1 Time Comparison

 In this section we took different angles and calculated the sine and cosine of that

particular angle and the time taken to execute them using inbuilt functions in MATLAB and

the CORDIC algorithm and tabulated the results as shown in the figure below. From the table

we can conclude that the time taken to implement the CORDIC algorithm is much less than

inbuilt function available in MATLAB. Therefore, the efficiency is more in CORDIC.

Angle(degrees) Sine Cosine Time

(inbuilt)

Sine Cosine Time

(CORDIC)

30 0.5 0.8660 0.012468 0.4989 0.8666 0.002841

45 0.7071 0.7071 0.012061 0.7080 0.7062 0.002365

60 0.8660 0.5 0.013507 0.8666 0.4989 0.002356

90 1 0 0.013502 1.0000 0.0012 0.002276

Table 6.1 Time Comparisons

6.2 Values comparison in MATLAB

 The below figure shows the Error between the values of sine and cosine Calculated

using CORDIC algorithm and the actual value.

Figure 6.1 Values comparison in MATLAB

49

6.3 Values Comparison in Xilinx

In this section we calculated cosine and sine values in both MATLAB and XILINX and

tabulated them. Then we noticed that the values are almost similar to each other. So, we can

conclude that the values of sine and cosine using CORDIC algorithm are not compromised

when compared to sine and cosine values using inbuilt function and through LUT approach.

And we can also conclude that CORDIC algorithm implemented in both MATLAB and

XILINX have similar values with less precision.

Table 6.2 Sine and Cosine value comparison in Xilinx

ANGLE

(degrees)
Cosine

(inbuilt)

Cosine

(CORDI

C IN

MATLA

B)

Cosine

CORDI

C in

verilog)

Cosine

(DDFS)

Sine

(inbuilt)
Sine

(CORD

IC IN

MATL

AB)

Sine

(COR

DIC

IN

VERIL

OG)

Sine

(DDFS

)

0

1

1

0.9998

1

0

-0.0012

0

0

10

0.9848

0.9846

0.9846

0.9848

0.1736

0.1749

0.1736

0.1736

20

0.9396

0.9391

0.9394

0.9396

0.3420

0.3435

0.3420

0.3420

30

0.8660

0.8666

0.8658

0.8660

0.4999

0.4989

0.4999

0.4999

40

0.7660

0.7669

0.7658

0.7660

0.6427

0.6418

0.6426

0.6427

50

0.6427

0.6418

0.6426

0.6427

0.7660

0.7669

0.7658

0.7660

60

0.4999

0.4989

0.4999

0.4999

0.8660

0.8666

0.8658

0.8660

70

0.3420

0.3435

0.3420

0.3420

0.9396

0.9391

0.9394

0.9396

80

0.1736

0.1749

0.1736

0.1736

0.9848

0.9846

0.9846

0.9848

90

0

0

0

0

1

1

0.9999

1

50

6.4 Simulation Results

6.4.1 DDFS Architecture using LUT:

The below figure shows the sine and cosine wave form generated in XILINX using lookup

table approach.

Figure 6.2 DDFS architecture using LUT

Calculations:

F0 = (fclk x fcw)/224

F0 = (100MHz x 168)/224

F0 = 1000Hz

Therefore, the fcw = 168 is given as input to the phase accumulator to produce the sine

waveform with output frequency of 1000Hz. The practical value is calculated and verified with

the Theoretical value.

51

6.4.2 DDFS architecture using CORDIC Approach:

The below figure shows the sine and cosine wave form generated in XILINX using CORDIC

approach.

Figure 6.3 DDFS architecture using CORDIC Approach

Calculations:

F0 = (fclk x fcw)/232

F0 = (100MHz x 42950)/232

F0 = 1000Hz

Therefore, the fcw = 42950 is given as input to the phase accumulator to produce the sine

waveform with output frequency of 1000Hz. The practical value is calculated and verified with

the Theoretical value.

52

6.5 Memory Utilization

6.5.1 Memory Utilization in LUT approach:

RAM and ROM are used in LUT approach, where all the 1024 sampled values of sine

of 16 bit wide are stored. This is said to be the disadvantage as it occupies more memory and

this has to be minimized.

Table 6.3 ROM and RAM utilization in LUT approach

6.5.2 Memory Utilization in CORDIC approach:

In CORDIC approach RAM and ROM are not used which overcomes the limitation in

LUT approach of occupying more memory.

Table 6.4 ROM and RAM utilization in CORDIC approach

53

6.6 Frequency Comparison

 The below table 6.5 shows the comparison of frequency, time period and number of

ROMs used in the DDFS using LUT approach and the CORDIC approach.

Table 6.5 Frequency Comparison

 After comparing the results it is observed that there is no compromise in the frequency

and time period of the sinusoidal wave obtained in both LUT and CORDIC approach, but

CORDIC approach overcomes the disadvantage of using a ROM in LUT approach. As it is

observed that there is no ROM used in CORDIC approach.

Frequency

Control

Word

Frequency

Time

Period

LUT approach

CORDIC approach

Frequency

Time

period

No. of

ROM’s

used

Frequency

Time

period

No. of

ROM’s

used

0000A7C6 1KHz 1000μsec 1KHz 1000μsec 1 1KHz 1000μsec 0

00068DB9 10KHz 100μsec 10KHz 100μsec 1 10KHz 100μsec 0

0020C94C 50KHz 20μsec 50KHz 20μsec 1 50KHz 20μsec 0

54

CONCLUSION

Direct Digital frequency Synthesizer has been successfully implemented using LUT

approach and CORDIC method. From the results obtained we can conclude that CORDIC

method of implementation gives an identical output to the lookup table with a slightly increased

distortion but gives advantage of removing the usage of ROM. Using CORDIC algorithm in

implementing Direct Digital Frequency Synthesizer Architecture makes the calculation

efficient and saves memory when compared to DDFS implementation using LUT approach. In

this project we have implemented the CORDIC algorithm and implemented DDFS architecture

and analysed the power and synthesis results. We did time comparisons to show that CORDIC

saves time and is efficient. And also compared the results to show that the accuracy using

CORDIC is not compromised.

55

REFERENCES

[1]- P. K. Meher, J. Valls, T. B. Juang, K. Sridharan and K. Maharatna, “50 years of CORDIC:

algorithms, architectures, and applications,” IEEE Transactions on Circuits and Systems I, 2009,

vol. 56, pp. 1893 1907.

[2] - J. Volder, “The CORDIC computing technique,” IRE Transactions on Computing, 1959, pp.

330 334.

[3] - T. Rodrigues and J. E. Swartzlander, “Adaptive CORDIC: using parallel angle recoding to

accelerate rotations,” IEEE Transactions on Computers, 2010, vol. 59, pp. 522 531.

[4] - T. Zaidi, Q. Chaudry and S. A. Khan, “An area and time efficient collapsed modified

CORDIC DDFS architecture for high rate digital receivers,” inProceedings of INMIC, 2004, pp.

677 681. S. A. Khan, ‘‘A fixed point single stage CORDIC architecture’’, Technical report CASE,

June 2010.

[5] - J. Valls, T. Sansaloni, A. P. Pascual, V. Torres and V. Almenar, “The use of CORDIC in

software defined radios: a tutorial,” IEEE Communications Magazine, 2006, vol. 44, no. 9, pp. 46

50.

[6] - J. S. Walther, “A unified algorithm for elementary functions,” in Proceedings of AFIPS

Spring Joint Computer Conference, 1971, pp. 379 385.

[7] - Sharma, S., Kulkarni, S., & Lakshminarasimhan, P. (2009). Implementation and application

of CORDIC algorithm in satellite communication. In 15th National Conference on

Communication, January 2009. Guwahati, India.

[8] - Khan, S. A. (2011). Digital design of signal processing systems: a practical approach. Wiley

(2011).

