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ABSTRACT 

 In this project an efficient approach is proposed in implementing DDFS architecture 

using CORDIC algorithm. Direct Digital Frequency Synthesis (DDFS) is a method of 

producing an analog waveform usually a sine wave by generating a time-varying signal in 

digital form and then performing a digital-to-analog conversion from a fixed clock frequency. 

It can offer fast switching between output frequencies, fine frequency resolution, and operation 

over a broad spectrum of frequencies. DDFS architecture can be implemented using 

ROM/lookup table approach. 

 CORDIC based DDFS architecture is a process where we design a new kind of 

architecture using the finest CORDIC algorithm in which we replace the ROM with CORDIC 

element to save memory. Coordinate rotation digital computer (CORDIC) is an efficient 

algorithm for computations of trigonometric functions. Scaling-free-CORDIC is one of the 

famous CORDIC implementations with advantages of speed and area. After describing the 

algorithm and its implementation in MATLAB, the project covers design techniques that can 

be applied to implement a DDFS architecture in VIVADO using Verilog Programming 

language. The output frequency results of the DDFS using LUT approach and DDFS using 

CORDIC algorithm is compared. The simulation results of the both approaches will be verified. 

Keywords: CORDIC Algorithm, DDFS, lookup table, Verilog 
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CHAPTER -1 

INTRODUCTION 

1.1  Introduction to Sine and Cosine 

Sine is a trigonometric function of an angle. It has a number of properties, such as being 

periodic and odd. In the context of a triangle, for the specified angle, sine is the ratio of the length of 

the side that is OPPOSITE the angle to the length of the longest side, or HYPOTENUSE, of the 

triangle. 

 

Figure 1.1 Representation of sine angle 

sin(α)=opposite/hypotenuse 

Like mentioned above, the sine function is periodic, which means that it is a function                     

returning to the same value at regular intervals. Sine has a period of 2π, which means we can write it 

as:  

sin (α) = sin(α+2π) 

sin (α) = sin(α+2kπ), k ∈ all integers 

 

Figure 1.2 Sinusoidal Waveform 
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The sine of any angle can vary from −1 to +1. For example, the sine of 0° is 0 and the 

sine of   90° is 1. The sine of 270° is −1 and when we get to 360°, we are back to zero again.   

Cosine is a trigonometric function of an angle. It has a number of properties, such as being 

periodic and even. In the context of a triangle, for the specified angle, cosine is the ratio of the length 

of the side that is ADJACENT the angle to the length of the longest side, or HYPOTENUSE, of 

the triangle. 

 

Figure 1.3 Representation of Cosine angle 

Once a triangle to analyse is chosen, we can write: 

cos(α)=adjacent/hypotenuse 

Like mentioned above, the cosine function is periodic, which means that it is a function 

returning to the same value at regular intervals. Cosine has a period of 2π, which means we can write 

it as:  

cos(α)=cos(α+2π)  

or, in a more general sense, 

cos (α)= cos(α+2kπ), k ∈ all integers 

 

Figure 1.4 Cosine waveform 
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1.2 Different types of methods for implementing sine and cosine waves 
 

A key requirement across a multitude of industries is to accurately produce, easily 

manipulate, and quickly change waveforms of various frequencies and types. Whether a 

wideband transceiver requires an agile low-phase-noise frequency source with excellent 

spurious-free dynamic performance or an industrial measurement and control system needs a 

stable frequency stimulus, the ability to quickly, easily, and cost effectively generate an 

adjustable waveform while maintaining phase continuity is a critical design which is required. 

It is not uncommon to need a sine wave but how do you generate it? The “best” or most 

appropriate method for a particular application depends on several things such as: 

• Frequency, 

• Purity required, 

• Amplitude, 

• Possible synchronization with another frequency, 

• Variable frequency and/or amplitude. 

There are different types of methods for generating sine and cosine waveforms: 

1.2.1 Wien Bridge Oscillator 

1.2.2 Phase-shift Oscillator 

1.2.3 PLL Method 

1.2.4 DDFS  

1.2.1 Wien Bridge Oscillator 

A popular low frequency (audio, and up to about 100 kHz or so) sine wave oscillator is 

the Wien bridge shown in Figure 1.5  

 

 

 

 

 

Figure 1.5 Wien bridge oscillator 
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It uses an RC network that produces a zero-degree phase shift from output back to the 

input, producing positive feedback that, in turn, produces oscillation. An op-amp is used to 

produce a gain of three that offsets the attenuation of the RC network. With a net closed loop 

gain of one, the circuit oscillates at a frequency determined by the values of the RC network: 

f = 
1

2𝜋𝑅𝐶
 

This circuit works great and produces a very clean low distortion sine wave. Its problem 

is that instabilities in the gain and phase can cause the circuit to go out of oscillation completely, 

or go into saturation producing a clipped sine wave or square wave. Some compensation 

components are usually added to eliminate this problem. 

1.2.2 Phase-shift Oscillator 

A popular way to make a sine wave oscillator is to use an RC network to produce a 

180-degree phase shift to use in the feedback path of an inverting amplifier. Setting the gain of 

the amplifier to offset the RC network attenuation will produce oscillation. There are multiple 

variations of phase shifters, including a Twin-T RC network and cascaded RC high pass 

sections that produce either 45 or 60 degree shifts in each stage. The amplifier can be a single 

transistor, single op-amp, or multiple op-amps. Figure shows one popular variation. 

 

Figure 1.6 Phase-shift Oscillator 

These oscillators produce a very pure low distortion sine wave. However, the frequency 

is fixed at the point where each RC section produces a 60-degree phase shift. That approximate 

frequency is: 

f = 
1

2.6𝑅𝐶
 

               In the circuit of Figure, the frequency should be about 3.85 kHz. 
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A fixed frequency is a disadvantage, but for a single frequency is good. The pure output 

needs to be buffered with an op-amp follower if you are going to drive a load. 

1.2.3 Phase Locked Loop 

A phase-locked loop is a feedback loop comprising: a phase comparator, a divider, and 

a voltage-controlled oscillator (VCO). The phase comparator compares a reference frequency 

with the output frequency (usually divided down by a factor, N), The error voltage generated 

by the phase comparator is applied to the VCO, which generates the output frequency. When 

the loop has settled, the output will bear an accurate relationship to the reference in frequency 

and/or phase. PLLs have long been recognized as superior devices for low phase noise and 

high spurious-free dynamic range (SFDR) applications requiring high fidelity and stable 

signals in a specific band of interest. 

Their inability to accurately and quickly tune the frequency output and waveform and 

their slow response limits their suitability for applications such as agile frequency hopping and 

some frequency- and phase-shift keying applications. 

 

Figure 1.7 Phase locked loop 

1.2.4 Direct Digital Frequency Synthesizer 

 Direct Digital Frequency Synthesis (DDFS) is a multi-step process of generating 

sinusoidal analogue waveforms. DDFS has a wide application in the modern communication 

era such as radio receivers, mobile telephones, radio telephones, walkie-talkies, CB radios, 

satellite receivers and none the less GPS systems. Traditional designs found in literature of 

high bandwidth frequency synthesizers make use of a Phase Locked-Loop (PLL) approach. 

The PLL offers very good wide tuning bandwidth due to the use of a programmable divider as 

compared to DDFS approach. On the other hand, DDFS provides many significant advantages 

such as fast settling time, sub-Hertz frequency resolution, continuous-phase switching response 

and low phase noise. One key design parameter of the DDFS is a Look Up Table (LUT). The 

response time, the power consumption and the size of the DDFS approach are factors that 
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depend on the size of the LUT. In addition to that, the resolution and the size of DDFS are also 

dependable on the size of the phase accumulator. 

 

Figure 1.8 Direct digital frequency synthesiser. 

  It begins with a read-only memory (ROM) that stores a series of binary values that 

represent values that follow the trigonometry equation for a sine wave. These values are then 

read out of the ROM one at a time and applied to a digital-to-analogue converter (DAC). A 

clock signal steps an address counter that then accesses the sine values in ROM sequentially, 

and sends them to the DAC. The DAC generates an analogue output signal that is proportional 

to the binary value from the ROM. What you get is a stepped approximation of a sine wave. 

 

Figure 1.9 A stepped approximation of a sine wave 

  If you use enough samples and use more bits for the binary value, the steps will be 

smaller and a more fine-grained sine wave will occur. The frequency of the sine wave depends 

on the number of samples or values you use for the sine wave and the frequency of the clock 

signal that reads the values out of the ROM. If the steps are too large, you can pass the stepped 

signal through a low pass filter to smooth it out. 
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CHAPTER-2 

DIRECT DIGITAL FREQUENCY SYNTHESIZER 

2.1 Introduction to DDFS 

Direct digital synthesis (DDS) is a method of producing an analogue waveform—

usually a sine wave—by generating a time-varying signal in digital form and then performing 

a digital-to-analogue conversion. They are suitable for portable low battery drain trans 

receivers. They are also capable of being incorporated with different digital modulation by 

using different processing methods DDS devices are very compact and draw little power. 

DDFS (Direct Digital Frequency Synthesizer) is a novel frequency synthesis 

technology with a huge relative bandwidth, quick frequency conversion time, high resolution, 

and outstanding phase consistency. This DDFS architecture is mostly used in modern 

communication. 

2.2 Performance of DDFS 

Digital synthesis is based on a phase accumulator which generates a series of digital 

states, the value of which increases linearly, forming a numeric ramp. This signal is made 

periodic and represents the instantaneous phase of the output waveform, from zero to 2pi 

radians. This is the digital input to a lookup table which converts the numeric ramp into a sine 

wave. While the most common DDS output waveform is the sine wave; ramps, triangle waves, 

and square waves are also easily generated. 

 

Figure 2.1 DDFS Architecture 

The direct digital synthesizer is based on a phase accumulator which generates the 

instantaneous phase of a waveform. A lookup table provides the phase to amplitude conversion 

which is applied to a digital-to-analogue converter, producing the desired analogue output after 

filtering.  

The output of the phase to amplitude lookup table is sent to a digital-to-analogue 

converter (DAC) and is converted into an analogue waveform, which is most commonly 

sinusoidal. Since the input to the DAC is a series of sampled values, the output has quantization 

steps. These steps produce spectral images at multiples of the sample rate in the frequency 
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domain which are not desired. A low-pass filter, placed after the DAC, suppresses these 

unwanted spectral responses. 

The phase accumulator: 

The phase accumulator is a modulo N counter that has 2N digital states which are 

incremented for each system clock input pulse. The size of the increment depends on the value 

of the tuning word, M, applied to the accumulator adder stage. The tuning word fixes the step 

size of the counter increment. This will determine the frequency of the output waveform. 

The phase accumulator generally has from 24 to 48 bits; at 24 bits there are 224 or 

16,777,216 states. This number represents the number of phase values between 0 and 2p 

radians, or the achievable phase increment. For a 24-bit phase accumulator, the phase 

resolution is 3.74 E-7 radians. If a larger phase accumulator is used, the phase increment 

becomes even finer. 

  One way of visualizing the operation of the phase accumulator is to look at the 

accumulator operation as a phase wheel  

 

 

Figure 2.2 Digital Phase Wheel 

  A simplified view of a 16-state phase accumulator operation using a phase wheel to 

visualize how the tuning word affects the output frequency of the DDS. (Image source: Digi-

Key Electronics) 
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The accumulator states are periodic and are represented as lying on a circle. Dots on 

the circle represent all the phase states of the accumulator. In this case, for simplicity, the 

accumulator has 16 states. If the tuning word is equal to one, as in the top diagram, then the 

step increment at each clock is one, and all states are selected during the full period. 

  Projected to the right of the phase wheel is the analogue output for each state. As this 

is a quantized device, the analogue output holds its current state until the clock advances the 

phase wheel to its next state. The output waveform consists of a single cycle of the quantized 

sine wave containing sixteen values. 

  In the lower diagram the tuning word value is set to two. With this setting, every other 

state on the phase wheel is selected. The analogue output now consists of two cycles, each with 

eight amplitudes, giving a total of sixteen states. With the tuning word set to two, the output 

frequency is now twice the previously obtained value. 

  The output frequency of the DDS is set by the tuning word value and increases 

proportionally to the value of the tuning word. The sample rate remains fixed at the system 

clock rate, and the time between output samples is constant. The output frequency depends on 

the tuning word increment, so as the tuning word value increases there are fewer steps in each 

output cycle, thereby increasing the frequency. The tuning word can be increased until there 

are only two samples per cycle, which brings the DDS output to its Nyquist frequency, or half 

the system clock rate. Generally, the DDS is limited by design to always have an output 

frequency that is less than the Nyquist limit. 

Along with the system clock frequency, the output frequency of the DDS is also 

dependent upon the tuning word value, and the length of the accumulator. It is expressed by 

Equation. 

fout = 
𝑀∗𝑓𝑐

2𝑁
…..……………………………………………………….…………… (2.1) 

Where: 

fout is the DDS output frequency 

M is the tuning word value 

fc is the system clock frequency 

N is the length of the phase accumulator 
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The output of the phase accumulator, which is the instantaneous phase of the output 

waveform, is used to drive the phase to amplitude converter. The phase to amplitude converter 

outputs a digital word, the value of which is the amplitude of the sine waveform for the input 

phase. 

  Note that the number of bits used to drive the phase to amplitude converter is less than 

that used for the phase accumulator. This is referred to as phase truncation and is used to reduce 

the die area and power consumption of the digital stages after the phase accumulator. While it 

does cause some spurious spectral components, called truncation spurs, they are minimized by 

careful design. 

  E.g.  Let our required frequency be f0= 1 KHz and let N=5 bits and for easy 

simplification fclk= 32 KHz 

Now, 

f0 = (W*fclk)/2
N                                             

1   = W * 32 / 32  

W = 1 

Sine Values N-bit binary numbers 

Sin(0) = 0 00000 

Sin(5) = 0.0871 00001 

Sin(10) = 0.173 00010 

Sin(15) = 0.2588 00011 

Sin(20) = 0.342 00100 

Table 2.1 Sine angle generation table 

• Initially let N-bit numbers be N = 00000 

• This N is used as an index to ROM, now o/p will be 0 

• For next clock pulse, N=00001 then o/p = 0.0871 

• For next clock pulse, N=00010 then o/p = 0.173 

• For next clock pulse, N=00011 then o/p = 0.2588 

• For next clock pulse, N=00100 then o/p = 0.342 

• So, to generate a value of 20 degrees, it takes 4 clock cycles. 
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Figure 2.3 Graphical representation of sine angle generation (1) 

E.g., Now let the required frequency be f0 = 2 KHz 

              2 = W * 32/ 32 

              W = 2 

• Let N = 00000 be the initial value then the o/p will be 0 

• For 1st clock cycle, N = 00010 then the o/p = 0.173 

• For 2nd clock cycle, N = 00100 then the o/p = 0.342 

• So, here to generate a value of 20 degrees, we just require 2 clock cycles i.e., the wave 

is compressed when compared to that of f0 = 1 kHz. 

 

Figure 2.4 Graphical representation of sine angle generation 
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2.3 Improved DDFS Architecture: 

          The basic design of DDFS architecture is improved by exploiting the symmetry of sine 

and cosine waves. The output of the accumulator is truncated from N to L bits to reduce the 

memory requirement. 

 

Figure 2.5 Modified DDFS Architecture 

          A complete period 0 to 2pi of sine and cosine waves can be generated from values of the 

two signals from 0 to pi/4. The L-3 bits are used to address the memories, and then three most 

significant bits (MSBs) of the address are used to map the values to generate complete periods 

of cosine and sine. 

          A ROM/RAM based DDFS requires two 2L-3 memories of width M. The design takes up 

a large area and dissipates significant power. In reduced memory concept, L-3 bits are used to 

store the values of cosine and sine values from (0 to 𝝿/4) and ‘3’ most significant bits are used 

to map the values of remaining angles to the values Stored in LUT’s i.e.  

 

 

 

 

 

 

Table 2.2 Angles to the values stored in LUT 

 

 

Three MSB bits Remaining angles 

000 0 – 𝜋/4 

001 𝜋/4 − 𝜋/2 

010 𝜋/2 − 3𝜋/4 

011 3𝜋/4 − 𝜋 

100 𝜋 − 5𝜋/4 

101 5𝜋/4 − 3𝜋/2 

110 3𝜋/2 − 7𝜋/4 

111 7𝜋/4 − 2𝜋 
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2.4 Frequency Shift Keying (FSK) using DDFS: 

 Binary frequency-shift keying (usually referred to simply as FSK) is one of the simplest 

forms of data encoding. The data is transmitted by shifting the frequency of a continuous carrier 

to one of two discrete frequencies (hence binary). One frequency, f1, (perhaps the higher) is 

designated as the mark frequency (binary one) and the other, f0, as the space frequency (binary 

zero). Figure 2.6 shows an example of the relationship between the mark-space data and the 

transmitted signal. 

 

Figure 2.6 FSK Modulation 

 This encoding scheme is easily implemented using a DDFS. The DDFS frequency 

tuning word, representing the output frequencies, is set to the appropriate values to 

generate f0 and f1 as they occur in the pattern of 0s and 1s to be transmitted. The user programs 

the two required tuning words into the device before transmission. In this case, the MUX will 

be used to select the appropriate frequency word. The 2 x 1 MUX contains two selection lines 

(s1, s0) in which the Modulating signal is given as input which contains the data in binary format 

which is either 0 or 1. If the Data is bit-0 then first tuning word will be given as input to the 

DDFS through MUX and the respective frequency output will be obtained. If the Data is bit-1 

then second tuning word will be given as input to the DDFS through MUX. The block diagram 

in Figure 2.7 demonstrates a simple implementation of FSK encoding. 

 

Figure 2.7 A DDFS-based FSK Modulator 
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2.5 Verilog Program for implementing Basic DDFS 

 In the Basic DDFS the required inputs are clock input, frequency control word which 

are given to the phase accumulator for successive increments. The ROM table should be created 

for storing the values of all samples of sine. The all required sine samples are obtained from 

MATLAB and then the ROM table of 1024 values of each size 16 bits are created and stored 

as memory file in VIVADO. The accumulator register is initialized and then after every clock 

cycle the accumulator register is incremented by frequency control word, then the first 10-bits 

of the accumulator register indicates the address of the sine values stored in the ROM. The 

obtained values are assigned to the output which are in digital form and can viewed in Analog 

form using VIVADO Simulator.  

Program: 

timescale 1ns / 1ps 

//module creation 

module sine_dds( 

        input clk , 

        input [31:0] fcw, 

        output [15:0] dds_sin 

); 

reg signed [15:0] rom_memory [1023:0];  //ROM memory creation 

initial begin 

    $readmemh("sine.mem", rom_memory); 

end 

   reg [31:0] accu; 

   wire [9:0] lut_index; 

initial begin 

accu <= 32'd0; // Accumulator is initialized with the zeros 

end 

always@(posedge clk) 

begin 

        accu <= accu + fcw; 

       // Accumulator is incremented with fcw for every clock cycle 

end 
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assign lut_index = accu[31:22]; 

 // The first 10 bits will be the index of ROM 

assign dds_sin = rom_memory[lut_index];  

// The value at that address will be assigned to the output 

endmodule  

Calculation: 

 The output frequency of a DDFS device is determined by the given formula for output 

frequency. The length of the phase accumulator is the length of frequency control word, 

which determines the degree of frequency control word resolution of the DDFS 

implementation. Let’s find the frequency control word for an output frequency of 5 KHz 

where reference clock is 100 MHz and control word length is 32 bits (binary). The Resulting 

equation would be: 

5000 = (fcw x 100MHz)/ (2^32) 

fcw = (2^32 x 5000)/(100MHz)  

fcw = 214750 

Loading this value of fcw into the frequency control register would result in a output frequency 

of 5KHz, given a reference clock frequency of 100MHz. 
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CHAPTER – 3 

CORDIC METHODOLOGY 

3.1 Introduction to CORDIC 

CORDIC (for Coordinate Rotation Digital Computer), also known as Volder's 

algorithm, is a simple and efficient algorithm to calculate hyperbolic and trigonometric 

functions, typically converging with one digit (or bit) per iteration. CORDIC is used to 

calculate trigonometric, hyperbolic functions, square roots, multiplications, divisions etc. 

These can be achieved by arbitrary base, typically converging with bit per iteration. CORDIC 

is therefore also an example of digit-by-digit algorithms. CORDIC and closely related methods 

known as pseudo multiplication and pseudo-division or factor combining are commonly used 

when no hardware multiplier is available (e.g., in simple microcontrollers and FPGAs), as the 

only operations it requires are addition, subtraction, bit shift and table lookup. As such, they 

belong to the class of shift-and-add algorithms. 

3.1.1 Importance of CORDIC 

  CORDIC Algorithm is applicable for square root, logarithmic, exponential function and 

for digital computer. Unit trigonometric functions are crucial functions like sine cosine 

functions can be computed easily. 

Present technology and limitations on power, operating frequency and energy 

consumption, on generating trigonometric functions using multiplier divider adder takes more 

time and complex. To reduce CORDIC algorithm converted to hardware known as CORDIC 

processor finally it reduces the use of hardware multiplier. 

3.1.2 CORDIC Applications 

• Signal And Image Processing 

• Communication Systems 

• Robotics 

• 3D Graphs 

• Aerospace Application 

• Different DSP And DIP Filters 

• Network Security  

• Biometric      
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3.2 Modes of Operation 

3.2.1 Rotation Mode 

CORDIC can be used to calculate a number of different functions. This explanation 

shows how to use CORDIC in rotation mode to calculate the sine and cosine of an angle, 

assuming that the desired angle is given in radians and represented in a fixed-point format. To 

determine the sine or cosine for an angle, the y or x coordinate of a point on the unit 

circle corresponding to the desired angle must be found. Using CORDIC, one would start with 

the vector v0. 

 

             In the first iteration, this vector is rotated 45° counter clockwise to get the vector . 

Successive iterations rotate the vector in one or the other direction by size-decreasing steps, 

until the desired angle has been achieved.  

 

 

Figure 3.1 Illustration of the CORDIC Algorithm 

....………………………………………………………………….. (3.1) 

The rotation matrix is given by 

 

 

 

 

https://en.wikipedia.org/wiki/Radian
https://en.wikipedia.org/wiki/Unit_circle
https://en.wikipedia.org/wiki/Unit_circle
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Using the following two trigonometric identities: 

 

The rotation matrix becomes 

 

The expression for the rotated vector is given by 

 

…………………… (3.2) 

Where xi and yi are the components of vi . Restricting the angles yi such that tan(ɣi) = 

±2-i , the multiplication with the tangent can be replaced by a division by a power of two, which 

is efficiently done in digital computer hardware using a bit shift. The expression then becomes 

 

Where, 

 

        And, σi  is used to determine the direction of the rotation: if the angle ɣi is positive, 

then σi  is +1, otherwise it is −1. 

Ki can be ignored in the iterative process and then applied afterward with a scaling factor 

 

……………………………………….… (3.3) 

 

https://en.wikipedia.org/wiki/Bit_shift
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which is calculated in advance and stored in a table or as a single constant, if the number of 

iterations is fixed. This correction could also be made in advance, by scaling V0 and hence 

saving a multiplication. Additionally, it can be noted that 

 

to allow further reduction of the algorithm's complexity. Some applications may avoid 

correcting for K altogether, resulting in a processing gain A : 

 

          After a sufficient number of iterations, the vector's angle will be close to the wanted 

angle𝛽. For most ordinary purposes, 40 iterations (n = 40) is sufficient to obtain the correct 

result to the 10th decimal place. 

           The only task left is to determine whether the rotation should be clockwise or counter 

clockwise at each iteration (choosing the value of  𝛽). This is done by keeping track of how 

much the angle was rotated at each iteration and subtracting that from the wanted angle; then 

in order to get closer to the wanted angle 𝛽, 𝛽 n+1 if  is positive, the rotation is clockwise, 

otherwise it is negative and the rotation is counter clockwise: 

…………………………. (3.4) 

          The values of  ɣn must also be precomputed and stored. But for small angles, arc tan (ɣn) 

= ɣn  in fixed-point representation, reducing table size. 

As can be seen in the illustration above, the sine of the angle 𝛽  is the y coordinate of the final 

vector Vn while the x coordinate is the cosine value. 

 

3.2.2 Vectoring Mode 

                  In this type of mode, the y-axis of the input vector is required to be zero. So, this 

mode calculates the phase and magnitude of the input vector. The rotation-mode algorithm 

described above can rotate any vector (not only a unit vector aligned along the x axis) by an 

angle between −90° and +90°. Decisions on the direction of the rotation depend on being 

positive or negative. 

 

                 The vectoring-mode of operation requires a slight modification of the algorithm. It 

starts with a vector the x coordinate of which is positive and the y coordinate is arbitrary. 

Successive rotations have the goal of rotating the vector to the x axis (and therefore reducing 

the y coordinate to zero). 

                 At each step, the value of y determines the direction of the rotation. The final value 

of contains the total angle of rotation. The final value of x will be the magnitude of the original 
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vector scaled by K. So, an obvious use of the vectoring mode is the transformation from 

rectangular to polar coordinates. 

3.3 Methodology Used 

            A convergence method for evaluating trigonometric functions  

• If a unit-length vector with end point at (X, Y) = (1,0) is rotated by an angle Z, its new 

end point will be at (X, Y) = (cos z, sin z). 

• Simple hardware – shifters, adders, lookup table. 

• Family of algorithms: Rotation, Vector mode 

1. Circular rotations 

2. Linear rotations 

3. Hyperbolic rotations 

3.4 Real CORDIC Rotations 

 

Figure 3.2 Real CORDIC Rotations 

If vector OEi is rotated about the origin by an angle I, the new vector OEi+1 will have 

the coordinates 

Real rotation: Ei+1 

Xi+1 = Xi cos 𝛼i -Yi sin 𝛼i…………………………………………….………… (3.5) 

Yi+1 = Yi cos 𝛼i + Xi sin 𝛼i……………………………………………………... (3.6) 

Zi+1 = Zi – 𝛼i……………………………………………………….….……..…. (3.7) 

The variable Z allows us to keep track of the total rotation over several steps. If Zo is 

the initial rotation goal and if the 𝛼i angles are selected at each step such that after n iterations 

Za tends to 0, then E₁ will be the end point after rotation by angle Zo. 
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3.5 Pseudo CORDIC Rotations 

 

Figure 3.3 Pseudo CORDIC rotations 

Pseudo rotations increase the vector length to  

Ri+1 = Ri (1 + tan2 𝛼i)
1/2………………………………………………..…….… (3.8) 

Pseudo rotation: E’
i+1 

Xi+1 = Xi - Yi tan 𝛼i……………………………………………………...…..... (3.9) 

Yi+1 = Yi + Xi tan 𝛼i………………………………………………...………... (3.10) 

Zi+1 = Zi – 𝛼i………………………………………………..………………... (3.11) 

3.6 Basic CORDIC Rotations: 

To simplify pseudo rotations, pick 𝛼i such that tan 𝛼i = di2
-i where di ∈ {-1,1}. Then 

Xi+1 = Xi - Yi di2
-i……………………………………………………….….. (3.12) 

Yi+1 = Yi + Xi di2
-i……………………………………………...…………... (3.13) 

Zi+1 = Zi – di tan-12-i……………………………………………. ………......(3.14) 

Computation of Xi+1 and Yi+1 requires an  i-bit right shift and an add/subtract; Zi+1 only 

requires an add/subtract and one table lookup. Precompute and store the function tan-1 2-i. 
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  Choosing angles: 

The angles to be taken for every ith iteration is precomputed and stored for easy access 

of all the values in computing sine and cosine at every iteration. The below table 3.1 shows the 

values of angles to chosen. 

i 𝜶i = 2-i Ei = tan-12-i di Zi-diEi = zi+1 

0 1.000000 45.0000000 1 30.00-45.00 = -15.00 

1 0.500000 26.565051 -1 -15.00 +26.57 = 11.57 

2 0.250000 14.036243 1 11.57 – 14.04 = -2.47 

3 0.125000 7.125016 -1 -2.47 + 7.13 =4.66 

4 0.062500 3.576334 1 4.66 – 3.58 =1.08 

5 0.031250 1.789910 1 1.08 -1.79 = -0.71 

6 0.015625 0.895174 -1 -0.71+0.90 = 0.19 

7 0.007813 0.447614 1 0.19 -0.45 = -0.26 

8 0.003906 0.223811 -1 -0.26 +0.22 =-0.04 

9 0.001953 0.111906 -1 -0.04 + 0.11 =0.07 

Table 3.1 Choosing the predefined angles 

For example , 

 

Figure 3.4 Illustration of the first three rotations for a Z of 300 

 If we want to calculate sine and cosine of a required angle, we should rotate the vector 

from the initial position by few successive angles which are predefined in the ROM. The angles 

required for every rotation which are stored in ROM are tabulated in Table 3.1.  

 For example, if required angle is 300 then make Z = 300 and then compute the further 

iterations as shown in the Figure 3.4. 
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3.7 Hardware Mapping 

CORDIC is generally faster than other approaches when a hardware multiplier is 

unavailable (e.g., in a microcontroller) or when the number of gates required to implement the 

function is to be minimized (e.g., in an FPGA). On the other hand, when a hardware multiplier 

is available (e.g., in a DSP microprocessor), table lookup methods and power series are 

generally faster than CORDIC.  

A straight forward hardware implementation for CORDIC arithmetic is shown below. 

It requires three registers for x, y and z, a look up table to store the values of αi=tan-1 2-i two 

shifter to supply the terms 2-i x and 2-i y to the adder/subtractor units. 

 

Figure 3.5 Hardware Mapping 

These CEs are cascaded together for a fully parallel implementation. That the above 

CORDIC algorithm computes sin and cosine of a particular angle which should be in the range 

of -54.88 degrees to 54.88 degrees. 

When we want to calculate the sin and cosine of 70 degrees the 𝜃0 is taken as 70 degrees 

and the CORDIC tries to make the resultant angle equal to 0 it applies a negative rotation 

𝛥𝜃=tan-1 20 to bring the angle 𝜃1=16.44. Two more negative rotations take the angle to the 

negative side with 𝜃3 = -4.73. The algorithm now gives positive rotation𝛥𝜃3 = tan-1 2-3 and 

keeps working to make the final angle equal to 0, and in the final iteration the angle 𝜃16 = 

0.0008 degrees. 
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Figure 3.6 Pipelined FDA architecture of CORDIC algorithm 

 At first, initial coordinate values and required angle will be given to the first CORDIC 

element. At every CORDIC element, the pre-computed angle will be given as input to it. The 

corresponding result of the first CORDIC element will be the first iteration values which will 

be given to the next CORDIC element for the further iterations. For further iterations, the 

CORDIC elements will be cascaded serially one after the another. The number of CORDIC 

elements that we require depends on accuracy of the sine and cosine values. At final iteration, 

coordinates obtained will be sine and cosine of required angle.  

3.8 Time Shared Architecture 

 

Figure 3.7 Four slow folded architecture by a folding factor of 4 
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Here in the before diagram, we have seen that the four CORDIC elements have been 

arranged in cascaded form and the output of last CORDIC element has been given to the first 

CORDIC element. Before giving to the first CORDIC element it is stored in register R0.  

The main idea of this time-shared architecture is to achieve a greater number of outputs 

in less time interval or else we can say that in a smaller number of clock cycles. For achieving 

that we have arranged this CORDIC elements in this format. 

The working mainly starts from taking four inputs and giving one after other inputs for 

every clock. After first clock the outputs of first CORDIC element will be stored in register 

R1. And for next cycle the output of first CORDIC element is given to next CORDIC element 

and the new input is given to the first CORDIC element. In the same way after four clock cycles 

all the four inputs will be given to the architecture. And after fixed number of cycles/iterations 

the outputs will be obtained. 

 

Figure 3.8 Timing diagram of 4 slow folded CORDIC architecture 

  In the above-mentioned Figure 3.8 we can observe the Timing diagram of 4 

slow folded CORDIC architecture. In the first clock cycle the first input first iteration value 

stored in R1 and after in second clock cycle the second input first iteration value stored in R1 

and first input second iteration value stored in R2. And after further clock cycles all the outputs 

of the given inputs will calculated in fixed number of iterations because of this folder 

architecture, which is one of the biggest advantage. 

3.9 CORDIC Based DDFS Architecture 

           Direct Digital Frequency Synthesis (DDFS) is a technique for creating an 

analogue waveform—usually a sine wave—by creating a time-varying signal in digital form 

and then converting it to analogue. It was written in Verilog and then emulated with XILINX 

VIVADO. DDFS is implemented in a variety of ways. The frequency control word is delivered 

to the phase accumulator in a conventional DDFS, which determines the DDFS' output 
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frequency. The frequency control word is added to the accumulator register for each clock 

pulse. The phase of the output waveform is represented by the value in the accumulator register. 

 

Figure 3.9 CORDIC based DDFS Architecture 

When the frequency control word is large, fewer phase angles are taken, and the time 

period is reduced. When the frequency control word is tiny, a larger number of phase angles 

are taken, resulting in a longer waveform time period. The CORDIC architecture is used in this 

application. The CORDIC algorithm is used instead of ROM to compute the sin and cosine of 

the desired angle by rotating the original vector. Each clock pulse alters the phase angle in the 

accumulator register, and the CORDIC algorithm computes the sine and cosine of each phase 

angle in a fixed number of iterations to generate a digital sinusoidal waveform. 

3.9.1 Calculations: 

The output frequency of a DDFS device is determined by the above given formula 

for output frequency. The length of the phase accumulator is the length of frequency control 

word, which determines the degree of frequency control word resolution of the DDFS 

implementation. Let’s find the frequency control word for an output frequency of 1 KHz where 

reference clock is 100 MHz and control word length is 32 bits (binary). The Resulting equation 

would be: 

1000 = (fcw x 100MHz)/ (2^32) 

fcw = (2^32 x 1000)/(100MHz)  

fcw = 42950 

Loading this value of fcw into the frequency control register would result in a output frequency 

of 1KHz, given a reference clock frequency of 100MHz. 
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3.10 Verilog Implementation of CORDIC based DDFS architecture 

In the CORDIC based DDFS architecture the required inputs are Xin, Yin and angle. 

The 32 bit angle value is the accumulator register which is initialized and then after every clock 

cycle, it is incremented by frequency control word, then the 32 bit angle value will be given to 

the CORDIC element that computes the Sine and Cosine values of required angle. The obtained 

values are assigned to the output which are in digital form and can viewed in Analog form 

using VIVADO Simulator.  

 Program: 

`timescale 1 ns/100 ps 

 module procor (clock, angle, Xin, Yin, Cosine, Sine); 

   parameter c = 16;   // bit width of input and output data 

   localparam STG = c ; // similar bit width of vectors X and Y 

   input  clock; 

   input  signed  [31:0] angle; 

   input  signed  [c-1:0] Xin; 

   input  signed  [c-1:0] Yin; 

   output signed  [c :0] Cosine; 

   output signed  [c :0] Sine; 

   wire signed [31:0] tan_inverse [0:30]; 

   // Assigning tan_inverse table 

   assign tan_inverse[00] = 32'b00100000000000000000000000000000; 

   // 45.000 degrees -> atan(2^0) 

   assign tan_inverse[01] = 32'b00010010111001000000010100011101;  

   // 26.565 degrees -> atan(2^-1) 

   assign tan_inverse[02] = 32'b00001001111110110011100001011011;  

   assign tan_inverse[03] = 32'b00000101000100010001000111010100;  

   assign tan_inverse[04] = 32'b00000010100010110000110101000011; 

   assign tan_inverse[05] = 32'b00000001010001011101011111100001; 
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   assign tan_inverse[06] = 32'b00000000101000101111011000011110; 

   assign tan_inverse[07] = 32'b00000000010100010111110001010101; 

   assign tan_inverse[08] = 32'b00000000001010001011111001010011; 

   assign tan_inverse[09] = 32'b00000000000101000101111100101110; 

   assign tan_inverse[10] = 32'b00000000000010100010111110011000; 

   assign tan_inverse[11] = 32'b00000000000001010001011111001100; 

   assign tan_inverse[12] = 32'b00000000000000101000101111100110; 

   assign tan_inverse[13] = 32'b00000000000000010100010111110011; 

   assign tan_inverse[14] = 32'b00000000000000001010001011111001; 

   assign tan_inverse[15] = 32'b00000000000000000101000101111101; 

   assign tan_inverse[16] = 32'b00000000000000000010100010111110; 

   assign tan_inverse[17] = 32'b00000000000000000001010001011111; 

   assign tan_inverse[18] = 32'b00000000000000000000101000101111; 

   assign tan_inverse[19] = 32'b00000000000000000000010100011000; 

   assign tan_inverse[20] = 32'b00000000000000000000001010001100; 

   assign tan_inverse[21] = 32'b00000000000000000000000101000110; 

   assign tan_inverse[22] = 32'b00000000000000000000000010100011; 

   assign tan_inverse[23] = 32'b00000000000000000000000001010001; 

   assign tan_inverse[24] = 32'b00000000000000000000000000101000; 

   assign tan_inverse[25] = 32'b00000000000000000000000000010100; 

   assign tan_inverse[26] = 32'b00000000000000000000000000001010; 

   assign tan_inverse[27] = 32'b00000000000000000000000000000101; 

   assign tan_inverse[28] = 32'b00000000000000000000000000000010; 

   assign tan_inverse[29] = 32'b00000000000000000000000000000001;  

   assign tan_inverse[30] = 32'b00000000000000000000000000000000; 

   //stage outputs 

   reg signed [c :0] Co [0:STG-1]; 

   reg signed [c :0] Si [0:STG-1]; 

   reg signed [31:0] s [0:STG-1];  
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   // upper 2 bits = 2'b00 which represents 0 - π/2 range 

   // upper 2 bits = 2'b01 which represents π /2 to π range 

   // upper 2 bits = 2'b10 which represents π to 3* π /2 range (i.e. - π /2 to - π) 

   // upper 2 bits = 2'b11 which represents 3* π /2 to 2* π range (i.e. 0 to - π /2) 

   wire   [1:0] quad; 

   assign   quad = angle[31:30]; 

   always @(posedge clock) 

   begin  

   // first 2 MSB bits will determine the quadrant 

      case (quad) 

         2'b00, 

         2'b11:   // no pre-rotation needed for these quadrants 

         begin     

            Co[0] <= Xin; 

            Si[0] <= Yin; 

            s[0] <= angle; 

         end   

         2'b01: 

         begin 

            Co[0] <= -Yin; 

            Si[0] <= Xin; 

            s[0] <= {2'b00,angle[29:0]}; // subtract pi/2 from angle for this quadrant 

         end  

         2'b10: 

         begin 

            Co[0] <= Yin; 

            Si[0] <= -Xin; 

            s[0] <= {2'b11,angle[29:0]}; // add pi/2 to angle for this quadrant 

         end 
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      endcase 

   end 

   genvar i; 

   generate 

   for (i=0; i < (STG-1); i=i+1) 

   begin: XYZ 

      wire  sign; 

      wire signed  [c :0] X_shift, Y_shift;  

      assign X_shift = Co[i] >>> i; // shifting right 

      assign Y_shift = Si[i] >>> i; 

      assign sign = s[i][31]; // Z_sign = 1 if Z[i] < 0 

      always @(posedge clock) 

      begin 

       // rotation of vectors  

         Co[i+1] <= sign ? Co[i] + Y_shift     :  Co[i] - Y_shift; 

         Si[i+1] <= sign ? Si[i] - X_shift         :  Si[i] + X_shift; 

         s[i+1] <= sign ? s[i] + tan_inverse[i] :  s[i] - tan_inverse[i]; 

      end 

   end 

    endgenerate 

    // assigning output 

    assign Cosine = Co[STG-1]; 

    assign Sine   = Si[STG-1]; 

 endmodule 
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CHAPTER-4 

VERILOG 

4.1 Introduction to Verilog 

Verilog is a HARDWARE DESCRIPTION LANGUAGE (HDL). It is a language used 

for describing a digital system like a network switch or a microprocessor or a memory or a 

flip−flop. It means, by using a HDL we can describe any digital hardware at any level. Designs, 

which are described in HDL are independent of technology, very easy for designing and 

debugging, and are normally more useful than schematics, particularly for large circuits. 

4.1.1 Verilog Capabilities: 

• Verilog is a case sensitive language. 

• It is vendor independent which means a program can be executed in any simulator. 

• It is human and machine readable. Thus, it can be used as an exchange language 

between tools and designers. 

• Verilog allows different levels of abstraction to be mixed in same model. 

• Thus, a designer can define a hardware model in terms of switches, gates, RTL or 

behavioural code using tools like synthesis tools and his netlist is used for gate level 

simulation and for backend. 

4.1.2 Data types in Verilog 

4.1.2.1 Value Set 

Verilog consists of, mainly, four basic values. All Verilog data types, which are used 

in Verilog, store these values − 

0 (logic zero, or false condition)                                                                                                                 

1 (logic one, or true condition)                                                                                                    

x (unknown logic value)                                                                                                                    

z (high impedance state) 

Use of x and z is very limited for synthesis. 

 4.1.2.2 Wire 

A wire is used to represent a physical wire in a circuit and it is used for connection of 

gates or modules. The value of a wire can only be read and not assigned in a function or block. 

A wire cannot store value but is always driven by a continuous assignment statement or by 

connecting wire to output of a gate/module. Other specific types of wires are − 
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Wand (wired-AND) − here value of Wand is dependent on logical AND of all the device 

drivers connected to it. 

Wor (wired-OR) − here value of a Wor is dependent on logical OR of all the device drivers 

connected to it. 

Tri (three-state) − here all drivers connected to a tri must be z, except only one (which 

determines value of tri). 

4.1.2.3  Register: 

A reg (register) is a data object, which is holding the value from one procedural 

assignment to next one and are used only in different functions and procedural blocks. A reg 

is a simple Verilog, variable-type register and can’t simply a physical register. In multi-bit 

registers, the data is stored in the form of unsigned numbers and sign extension is not used. 

Example − 

reg c; // single 1-bit register variable 

reg [5:0] gem; // a 6-bit vector; 

reg [6:0] d, e; // two 7-bit variables 

4.1.2.4  Input, Output, Inout 

These keywords are used to declare input, output and bidirectional ports of a task or 

module. Here input and inout ports, which are of wire type and output port is configured to be 

of wire, reg, wand, wor or tri type. Always, default is wire type. 

4.2 Program structure in Verilog: 

• Module is a basic building block in Verilog. 

• It provides necessary information about input and output ports but hides the internal 

implementation. 

 Syntax: 

 module<module name>(input, output): 

 ………. 

 <logic of program> 

 ……… 

 ……… 

 end module 

 4.2.1 Declaration of input and output: 

• After declaration of module in the next step is to define the input and output ports. 

  e.g.: input a, b; 

• If input and output are more than one bit i.e., either two or more bits then we can define 

as below 

            input [3:0] a, b;     //four bit input (A3-A0&B3-B0) 
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            output [3:0] c;       //four bit output (C3-C0) 

 

4.3 Module declaration in Verilog 

4.3.1 Verilog Module 

 A module is a block of Verilog code that implements certain functionality. Modules 

can be embedded within other modules, and a higher-level module can communicate with its 

lower-level modules using their input and output ports. 

 A module should be enclosed within a module and end module keywords. The name of 

the module should be given right after the module keyword, and an optional list of ports may 

be declared as well. 

Syntax: 

module < name>([port_list]); 

//contents of module 

endmodule 

// A module can have an empty port_list 

module name; 

// Contents of the module 

endmodule 

 All variable declarations, functions, tasks, dataflow statements, and lower module 

instances must be defined within the module and endmodule keywords. 

4.3.2 Levels of Abstraction 

          Verilog supports a design at many levels of abstraction. The major three are – 

• The switch Level Modelling. 

• Gate – level Modelling. 

• The Data – Flow Level. 

• The Behavioural or Procedural Level. 

4.3.2.1 Switch level Modelling  

  A circuit is defined by explicitly showing how to construct it using transistors like pmos 

and nmos, predefined modules. 

 

module inverter (out, in): 

supply1 vdd; 

nmosx1(out, in, gnd); 

pmosx2(out, in, vdd); 

endmodule 
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4.3.2.2. Gate Level modelling 

 A circuit is defined by explicitly showing how to correct it using logic gates. Predefined 

modules, and the connections between them. In this first we think of our circuit as a box or 

module which is encapsulated from its outer environment, in such a way that its only 

communication with the outer environment, is through input and output ports. We then set out 

to describe structure within the module by explicitly describing its gates and sub modules, and 

how they connect with one another as well as to the module ports. In other words, structural 

modelling is used to draw a schematic diagram for the circuit. As an example, consider the full-

adder below. 

module fulladder (a, b, sum, cout); 

input a, b; 

output sum, cout; 

xor x1(a, b, y); 

xor x2(a, b, y); 

endmodule 

 

4.3.2.3 Data-flow Modelling 

 Dataflow modelling uses Boolean expressions and operators. In this we use assign 

statement. 

module fulladder (a, b, sum, Cout); 

input a, b; 

output sum, cout; 

assign sum = a^b; 

assign cout = a^b; 

endmodule 

 

4.3.2.4 Behavioural modelling 

There are two types of procedural blocks in Verilog 

Initial: initial blocks execute only once at time zero (start execution at time zero) 

Always: always blocks loop to execute over and over again, in other words, as other words as 

the name suggests, it executes always. 

module fulladder (a, b, clk, sum); 

input a, b, clk; 

output sum; 

always@ (posedgeclk) 

 begin 

sum= a+b; 

endmodule 
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4.4 Implementation of Basic Programs Using Verilog: 

4.4.1 Multiplexer:  

module mux99(a ,b ,c ,d, sel, out);                                       

input wire a,b,c,d; 

input wire [1:0] sel;              

output reg out; 

always @ (a or b or c or d or sel) 

begin                                                                                                    

case (sel)                                                                                           

2'b00 : out <= a; 

2'b01 : out <= b; 

2'b10 : out <= c; 

2'b11 : out <= d; 

endcase 

endmodule 

 

4.4.2 Full Adder: 

module fulladder99(a, b, cin, sum, cout); 

input a, b, cin; 

output sum,cout;                                                                                                                                                                                                                                                                                                                                        

wire x, y, z                                                                                               

half_adder  h1(.a(a), .b(b), .sum(x), .cout(y)); 

half_adder  h2(.a(x), .b(cin), .sum(sum), .cout(z));             

or or_1(cout, z, y); 

endmodule                                                                           

module half_adder( a, b, sum, cout );                                                  

input a, b; 

output sum,  cout; 

xor xor_1 (sum, a, b); 

and and_1 (cout, a, b); 

endmodule 
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CHAPTER – 5 

INTRODUCTION TO SOFTWARE TOOLS 

5.1 Software Tools Used 

5.1.1 MATLAB 

MATLAB (Matrix Laboratory) is a programming platform developed by Math    

Works, which uses its proprietary MATLAB programming language. The MATLAB 

programming language is a matrix-based language which allows matrix manipulations, 

plotting of functions and data, implementation of algorithms, creation of user interfaces, and 

interfacing with programs written in other languages, including C, C++, C#, Java, Fortran and 

Python. It is used in a wide range of application domains from Embedded Systems to AI, 

mainly to analyse data, develop algorithms, and create models and applications. 

Usage of MATLAB Software In This Project 

• MATLAB is used here to implement the CORDIC algorithm from the scratch since 

CORDIC has different modes available, we used MATLAB software to check those 

techniques. 

• It is used to do the time comparisons between the in-built codes available in MATLAB 

and the CORDIC algorithm 

• It is used to compare the accuracy of values between the values generated with the 

CORDIC algorithm and the direct functions available in MATLAB. 

• It is used to calculate the CPU-time required to implement the CORDIC algorithm. 

5.1.2 MODELSIM 

MODELSIM is a multi-language HDL simulation environment by Mentor Graphics, 

for simulation of hardware description languages such as VHDL, Verilog and System C, and 

includes a built-in C debugger MODELSIM can be used independently, or in conjunction with 

Intel Quartus Prime, Xilinx ISE or XILINX VIVADO. Simulation is performed using the 

graphical user interface (GUI), or automatically using scripts. 

 ModelSim uses a unified kernel for simulation of all supported languages, and the 

method of debugging embedded C code is the same as VHDL or Verilog. 

ModelSim and QuestaSim products enable simulation, verification and debugging for 

the following languages 

• VHDL 

• Verilog 

• Verilog 2001 

• System Verilog 

• PSL 
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Usage of ModelSim in this project: 

• We used ModelSim to implement the logic in Verilog. 

• It is used to check the simulation results and graphs. 

• Minimize the errors in the Verilog code. 

 

5.1.3 XILINX VIVADO 

  VIVADO enables developers to synthesize their designs, perform timing analysis 

examine RTL diagrams, simulate a design's reaction to different stimuli, and configure the 

target device with the programmer. VIVADO is a design environment for FPGA products 

from Xilinx, and is tightly-coupled to the architecture of such chips, and cannot be used with 

FPGA products from other vendors. 

Language support 

The VIVADO High-Level Synthesis compiler enables C, C++ and SystemC programs 

to be directly targeted into Xilinx devices without the need to manually create RTL. VIVADO 

HLS is widely reviewed to increase developer productivity, and is confirmed to support C++ 

classes, templates, functions and operator overloading. 

 XILINX VIVADO enables simulation, verification and synthesis for the following 

languages 

● VHDL 

● Verilog 
● System Verilog 

5.2 XILINX VIVADO ISE Design Suite (16.1 Version) 

Xilinx is a powerful software tool that is used to design, synthesize, simulate, test and 

verify digital circuit designs. The designer can describe the digital design by either using the 

schematic entry tool or a hardware description language In this software we will create VHDL 

design input files - the hardware description of the logic circuit, compile VHDL source files, 

create a test bench and simulate the design to make sure of the correct operation of the design 

(functional simulation). The purpose of this is to give new users an exposure to the basic and 

necessary steps to implement and examine your own designs using ISE environment. In this, 

we will design one simple module (OR gate), however, in the future, you will be designing 

such modules and completing the overall circuit design from these existing files. A VHDL 

input file in the Xilinx environment consists of Entity Declarations module name and interface 

specifications (I/O) - list of input and output ports, their mode, which is direction of data flow. 

and data type. Architecture defines a component's logic operation. 

There are different styles for the architecture body: (i) Behavioural - set of sequential 

assignment statements (ii) Data Flow - set of concurrent assignments o Structural - set of 

interconnected components a combination of these could be used, but in this tutorial we will 

use Dataflow. In its simplest form, the architectural body will take the following format, 
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regardless of the style: architecture architecture_name of entity_name is begin... -- statement 

end architecture_name: 

ISE (Integrated Software Environment) is a software tool produced by Xilinx for 

synthesis and analysis of HDL designs, enabling the developer to synthesize ("compile") their 

designs, perform timing analysis, examine RTL diagrams, simulate a design's reaction to 

different simulation, and configure the target device with the programmer. 

Xilinx is an American technology company, primarily a supplier of programmable 

logic devices. It is known for inventing FPGA. The Xilinx ISE is primarily used for circuit 

synthesis and design, while the Modelsim logic simulator is used for system-level testing. 

5.3 ISE Project Navigator: 

  In this section, we introduce the reader to the main components of an "ISE Project 

Navigator" window, which allows us to manage our design files and move our design process 

from creation to synthesis and to simulation phase. 

 

Figure 5.1 Xilinx Vivado Project Navigator window 

By opening the Xilinx vivado ISE suite, we will come to see the 3 main points. They are 

1) Quick start 

2) Tasks 

3) Information Centre 

In the Quick start block, we have create a new project, open project and open example project. 

In the Tasks, We have Manage IP, open hardware manager, Xilinx Td store. 

This section describes the four basic steps to working with a project. 
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Step 1----- Creating a New Project 

This creates .xpr file and a working library. 

Step 2 ---- Adding Items to project 

Projects can reference or include source files, folders for organizations, simulations, and any 

other files you want to associate with the project. You can copy files into the project directory 

or simply create mappings to files in other locations. 

Step 3 ---- Compiling the Files 

This checks syntax and semantics and creates the pseudo machine code that Vivado uses for 

simulation. 

Step 4 --- Simulating a Design 

This specifies the design unit you want to simulate and opens a structure tab in the workspace 

panel. Your specify will be used to create a working library subdirectory within the Project 

In order to start ISE double, click the desktop icon: Or click: 

Creating a New Project 

       After launching Vivado, from the start-up page click the “Create New Project” icon. 

Alternatively, you can select New Project. 

 

Figure 5.2 Creating new project window 

The New Project wizard will launch, click the “Next>” button to proceed 
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Figure 5.3 Guiding wizard for the project 

Enter a project name and select a project location. Make certain there are NO SPACES 

in either. It’s not a bad idea to only use letters, numbers and underscores as well. If necessary 

simply create a new directory for your Xilinx Vivado projects in your root drive. You will 

likely always want to select the "Create project sub-directory" check-box as well. This keeps 

things neatly organized with a directory for each project and helps avoid problems. Click the 

"Next>" button to proceed. 

 

Figure 5.4 Creating a project name 

  Select the "RTL Project" radial and select the "Do not specify sources at this time" 

check-box. If you don't select the check-box the wizard will take you through some additional 

steps to optionally add pre-existing items such as VHDL or Verilog source files, Vivado IP 

blocks, and XDC constraint files for device pin and timing configuration. For this first project 

you will add the necessary items later Click the “Next >" button to proceed. 
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Figure 5.5 Specifying the RTL project 

You need to filter down to and select the specific part number for your project. You 

can physically read the markings on your chip or refer to your board's documentation to find 

its part number. In the case of the Basys 3 it's the Artix-7 chip that's on the board, and the 

filters shown will help you get to the correct device that's highlighted. Once you select the 

correct device click the "Next>" button to proceed. 

 

Figure 5.6 Choosing a board for project 

Click the “Finish” button and Vivado will proceed to create your project as specified. 
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Figure 5.7 Project Summary 

5.4 Steps for Design Entry: 

5.4.1 Working through the Basic Project Flow: 

       The Vivado project window contains a lot of information, and the information displayed 

can change depending on what part of the design you currently have open as you work through 

the steps of your project. Keep this in mind as you work through this guide, because if you 

don't see a specific sub-window or sub-window tab it's possible you aren't in the correct part 

of the design. 

       The "Flow Navigator" on the left side of the screen has all the major project phases 

organized from top to bottom in their natural chronological order. You begin in the "Project 

Manager" portion of the flow and the header at the top of the screen next to the Flow Navigator 

reflects this. This header and the corresponding highlighted section in the Flow Navigator will 

tell you which phase of the design you have open. 
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Figure 5.8 Main window for the project 

5.4.2 Project Manager 

5.4.2.1 Project Settings 

Begin by clicking on "Project Settings" under the Project Manager phase of the Flow 

Navigator. 

 

Figure 5.9 Project settings window 

There are a lot of settings available here for all phases of the project flow, but for now 

just select "System Verilog" from the drop-down for the "Target language" in the "General" 

project settings and click the "OK" button. 
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5.4.2.2 Add sources 

Now click on “Add Sources” under the Project Manager phase of the Flow Navigator 

 

Figure 5.10 Adding the source files 

Select the “Add or create Design sources” radial and then click the “Next>” button. 

 

Figure 5.11 wizard that shows to the design source 

Click the “Create File” button or click the green “+” symbol in the upper left corner and select 

the “Create File…” option. 
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Figure 5.12 Creating a new file name for new design source 

   Make sure the options shown are selected in the "Create Source File" popup, and for 

the sake of following along enter "convolution (Gaussian filter)" for the "File name". Click the 

"OK" button when finished. 

 You can normally enter anything you like for the "File name" as long as it's valid, but 

always make certain there are no spaces. 

Figure 5.13 Selecting the type of file and location 

Click the “Finish” button and VIVADO will then bring up the “Define Module” window. 
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5.4.2.3 Define a module 

            You can use the "Define Module" window to automatically write some of the VHDL 

code for you. Additional "I/O Port Definitions" can be added by either clicking the green "+” 

symbol in the upper left or by simply clicking on the next empty line. The "Entity name" and 

"Architecture name" will be the corresponding Verilog HDL identifiers used in the code, as 

will whatever is typed in for each "Port Name". Any valid Verilog HDL identifier can be used 

for any of these, but for the sake of following along enter the information as shown. Make sure 

the proper "Direction" is set for each. Click the "OK" button when finished. 

           Note that if you would rather write your own code from scratch you can simply click 

the "Cancel" button and VIVADO will create a completely blank System Verilog VHDL 

source file inside your project. If you click the "OK" button without defining any "I/O Port 

Definitions" VIVADO will still write the basic Verilog HDL code structure but the port 

definition will be empty and commented out for you to uncomment and fill later 

          Also note that the port names here match the silkscreen reference designators of the 

switches and LEDS on the Basys 3 board that will be utilized for the example. This is for the 

convenience of those following along with the Basys 3, but should not be inferred as a 

requirement by beginners; each name is simply an arbitrary identifier. 

 

Figure 5.14 Module defining with ports 

         The System Verilog HDL source file generated will be added to your project in the 

"Design Sources" folder as shown. Double click it and it will open up in a new tab for you to 

view/edit all the code here was generated by the previous "Define Module" window, and for 

this example you only need to manually enter the three highlighted lines between the "begin" 

and "end” keywords. 

        If we want to create a simulation source we have to select a new simulation source by 

night clicking the add source block in the panel. 
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Figure 5.15 Creating the simulation sources 
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CHAPTER 6 

REPORTS AND SIMULATION RESULTS 

6.1 Time Comparison 

 In this section we took different angles and calculated the sine and cosine of that 

particular angle and the time taken to execute them using inbuilt functions in MATLAB and 

the CORDIC algorithm and tabulated the results as shown in the figure below. From the table 

we can conclude that the time taken to implement the CORDIC algorithm is much less than 

inbuilt function available in MATLAB. Therefore, the efficiency is more in CORDIC. 

Angle(degrees) Sine Cosine Time 

(inbuilt) 

Sine Cosine Time 

(CORDIC) 

30 0.5 0.8660 0.012468 0.4989 0.8666 0.002841 

45 0.7071 0.7071 0.012061 0.7080 0.7062 0.002365 

60 0.8660 0.5 0.013507 0.8666 0.4989 0.002356 

90 1 0 0.013502 1.0000 0.0012 0.002276 

Table 6.1 Time Comparisons 

6.2 Values comparison in MATLAB 

 The below figure shows the Error between the values of sine and cosine Calculated 

using CORDIC algorithm and the actual value. 

 

Figure 6.1 Values comparison in MATLAB 
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6.3 Values Comparison in Xilinx 

In this section we calculated cosine and sine values in both MATLAB and XILINX and 

tabulated them. Then we noticed that the values are almost similar to each other. So, we can 

conclude that the values of sine and cosine using CORDIC algorithm are not compromised 

when compared to sine and cosine values using inbuilt function and through LUT approach. 

And we can also conclude that CORDIC algorithm implemented in both MATLAB and 

XILINX have similar values with less precision. 

 

Table 6.2 Sine and Cosine value comparison in Xilinx 

ANGLE 

(degrees) 
Cosine 

(inbuilt) 

Cosine 

(CORDI

C IN 

MATLA

B) 

Cosine 

CORDI

C in 

verilog) 

Cosine 

(DDFS) 

Sine 

(inbuilt) 
Sine 

(CORD

IC IN 

MATL

AB) 

Sine 

(COR

DIC 

IN 

VERIL

OG) 

Sine 

(DDFS

) 

 

0 
 

1 
 

1 
 

0.9998 
 

1 

 

0 
 

-0.0012 
 

0 
 

0 

 

10 
 

0.9848 
 

0.9846 
 

0.9846 
 

0.9848 

 

0.1736 
 

0.1749 
 

0.1736 
 

0.1736 

 

20 
 

0.9396 
 

0.9391 
 

0.9394 
 

0.9396 

 

0.3420 
 

0.3435 
 

0.3420 
 

0.3420 

 

30 
 

0.8660 
 

0.8666 
 

0.8658 
 

0.8660 

 

0.4999 
 

0.4989 
 

0.4999 
 

0.4999 

 

40 
 

0.7660 
 

0.7669 
 

0.7658 
 

0.7660 

 

0.6427 
 

0.6418 
 

0.6426 
 

0.6427 

 

50 
 

0.6427 
 

0.6418 
 

0.6426 
 

0.6427 

 

0.7660 
 

0.7669 
 

0.7658 
 

0.7660 

 

60 
 

0.4999 
 

0.4989 

 

0.4999 
 

0.4999 

 

0.8660 
 

0.8666 
 

0.8658 
 

0.8660 

 

70 
 

0.3420 
 

0.3435 
 

0.3420 
 

0.3420 

 

0.9396 
 

0.9391 
 

0.9394 
 

0.9396 

 

80 
 

0.1736 
 

0.1749 
 

0.1736 
 

0.1736 

 

0.9848 
 

0.9846 
 

0.9846 
 

0.9848 

 

90 
 

0 
 

0 
 

0 
 

0 

 

1 
 

1 
 

0.9999 
 

1 
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6.4  Simulation Results  

 

6.4.1 DDFS Architecture using LUT: 

The below figure shows the sine and cosine wave form generated in XILINX using lookup 

table approach. 

 

Figure 6.2 DDFS architecture using LUT 

Calculations: 

F0 = (fclk x fcw)/224  

F0 = (100MHz x 168)/224  

F0 = 1000Hz 

Therefore, the fcw = 168 is given as input to the phase accumulator to produce the sine 

waveform with output frequency of 1000Hz. The practical value is calculated and verified with 

the Theoretical value. 
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6.4.2 DDFS architecture using CORDIC Approach: 

The below figure shows the sine and cosine wave form generated in XILINX using CORDIC 

approach. 

 

 

Figure 6.3 DDFS architecture using CORDIC Approach 

Calculations: 

F0 = (fclk x fcw)/232  

F0 = (100MHz x 42950)/232 

F0 = 1000Hz 

Therefore, the fcw = 42950 is given as input to the phase accumulator to produce the sine 

waveform with output frequency of 1000Hz. The practical value is calculated and verified with 

the Theoretical value. 
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6.5 Memory Utilization 

6.5.1 Memory Utilization in LUT approach: 

RAM and ROM are used in LUT approach, where all the 1024 sampled values of sine 

of 16 bit wide are stored. This is said to be the disadvantage as it occupies more memory and 

this has to be minimized. 

 

Table 6.3 ROM and RAM utilization in LUT approach 

6.5.2 Memory Utilization in CORDIC approach: 

In CORDIC approach RAM and ROM are not used which overcomes the limitation in 

LUT approach of occupying more memory. 

 

Table 6.4 ROM and RAM utilization in CORDIC approach 
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6.6 Frequency Comparison 

 The below table 6.5 shows the comparison of frequency, time period and number of 

ROMs used in the DDFS using LUT approach and the CORDIC approach.  

 

Table 6.5 Frequency Comparison 

 After comparing the results it is observed that there is no compromise in the frequency 

and time period of the sinusoidal wave obtained in both LUT and CORDIC approach, but 

CORDIC approach overcomes the disadvantage of using a ROM in LUT approach. As it is 

observed that there is no ROM used in CORDIC approach. 

 

 

 

 

 

 

 

 

 

 

 

 

Frequency 

Control 

Word 

 

Frequency 

 
Time 

Period 

LUT approach 
 

CORDIC approach 

 
Frequency 
 
 

 

Time 

period 
 
 

 

No. of 

ROM’s 

used 
 
 

 

Frequency 
 
 

 

Time 

period 
 
 

 

No. of 

ROM’s 

used 
 
 

0000A7C6 1KHz 1000μsec 1KHz 1000μsec 1 1KHz 1000μsec 0 

00068DB9 10KHz 100μsec 10KHz 100μsec 1 10KHz 100μsec 0 

0020C94C 50KHz 20μsec 50KHz 20μsec 1 50KHz 20μsec 0 
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CONCLUSION 

Direct Digital frequency Synthesizer has been successfully implemented using LUT 

approach and CORDIC method. From the results obtained we can conclude that CORDIC 

method of implementation gives an identical output to the lookup table with a slightly increased 

distortion but gives advantage of removing the usage of ROM. Using CORDIC algorithm in 

implementing Direct Digital Frequency Synthesizer Architecture makes the calculation 

efficient and saves memory when compared to DDFS implementation using LUT approach. In 

this project we have implemented the CORDIC algorithm and implemented DDFS architecture 

and analysed the power and synthesis results. We did time comparisons to show that CORDIC 

saves time and is efficient. And also compared the results to show that the accuracy using 

CORDIC is not compromised. 
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